Preferred Language
Articles
/
LBdBPo8BVTCNdQwCjWVK
Class-specific pre-trained sparse autoencoders for learning effective features for document classification
...Show More Authors

Scopus Crossref
View Publication
Publication Date
Tue Aug 15 2017
Journal Name
Journal Of Immunology
The Effect of Inhibitory Signals on the Priming of Drug Hapten–Specific T Cells That Express Distinct Vβ Receptors
...Show More Authors
Abstract<p>Drug hypersensitivity involves the activation of T cells in an HLA allele–restricted manner. Because the majority of individuals who carry HLA risk alleles do not develop hypersensitivity, other parameters must control development of the drug-specific T cell response. Thus, we have used a T cell–priming assay and nitroso sulfamethoxazole (SMX-NO) as a model Ag to investigate the activation of specific TCR Vβ subtypes, the impact of programmed death -1 (PD-1), CTL-associated protein 4 (CTLA4), and T cell Ig and mucin domain protein-3 (TIM-3) coinhibitory signaling on activation of naive and memory T cells, and the ability of regulatory T cells (Tregs) to prevent responses. An expa</p> ... Show More
View Publication
Crossref (40)
Crossref
Publication Date
Wed Mar 01 2023
Journal Name
Human Gene
The deubiquitylase-ubiquitin-specific protease 4 absence in HeLa cells leads to a reduction in Semliki Forest virus replication
...Show More Authors

View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Sun Feb 03 2019
Journal Name
Iraqi Journal Of Physics
Specific activities and radiation hazard parameters calculations of natural radionuclides in AL-Mustansiriyah university soils using NaI(Tl) detector
...Show More Authors

The specific activities of the natural radionuclides U-238 and Th-
232 and K-40 in 14 soil samples collected from different sites from
AL-Mustansiriyah university at two depths (topsoil "surface" and
20cm depth) were be investigated using gamma ray spectrometer
3"x3" NaI(Tl) scintillation detector.
The analysis of the energy spectra of the soil samples show that
these samples have specific activities ranging with (16.08-51.11)
Bq/kg for U-238, (14.79-52.29) Bq/kg for Th-232 and (191.08-
377.64) Bq/kg for K-40, with an average values of 29.37, 34.14 and
289.62 Bq/kg for U-238, Th-232, k-40 respectively. The radiation
hazard parameters of the natural radionuclides; radium equivalent
activity (Raeq), gamma a

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jun 01 2019
Journal Name
2019 International Engineering Conference (iec)
Assessment of Specific Absorption Rate and Temperature in the Tumor Tissue Subjected to Plasmonic Bow-Tie Optical Nano-Antenna
...Show More Authors

View Publication
Scopus (7)
Crossref (4)
Scopus Crossref
Publication Date
Wed Apr 01 2015
Journal Name
2015 Annual Ieee Systems Conference (syscon) Proceedings
Automatic generation of fuzzy classification rules using granulation-based adaptive clustering
...Show More Authors

View Publication
Scopus (4)
Crossref (4)
Scopus Crossref
Publication Date
Fri Sep 30 2016
Journal Name
Australian Journal Of Basic And Applied Sciences
Programming Exam Questions Classification Based On Bloom’s Taxonomy Using Grammatical Rule
...Show More Authors

Preview PDF
Publication Date
Mon Dec 14 2020
Journal Name
2020 13th International Conference On Developments In Esystems Engineering (dese)
Anomaly Based Intrusion Detection System Using Hierarchical Classification and Clustering Techniques
...Show More Authors

With the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vect

... Show More
View Publication
Scopus (4)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Sat Oct 03 2009
Journal Name
Proceeding Of 3rd Scientific Conference Of The College Of Science
Research Address: New Multispectral Image Classification Methods Based on Scatterplot Technique
...Show More Authors

Publication Date
Tue Jan 08 2019
Journal Name
Iraqi Journal Of Physics
Monitoring of south Iraq marshes using classification and change detection techniques
...Show More Authors

Digital change detection is the process that helps in determining the changes associated with land use and land cover properties with reference to geo-registered multi temporal remote sensing data. In this research change detection techniques have been employed to detect the changes in marshes in south of Iraq for two period the first one from 1973 to 1984 and the other from 1973 to 2014 three satellite images had been captured by land sat in different period. Preprocessing such as geo-registered, rectification and mosaic process have been done to prepare the satellite images for monitoring process. supervised classification techniques such maximum likelihood classification has been used to classify the studied area, change detection aft

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Oct 01 2018
Journal Name
Iraqi Journal Of Physics
Classification of brain tumors using the multilayer perceptron artificial neural network
...Show More Authors

Information from 54 Magnetic Resonance Imaging (MRI) brain tumor images (27 benign and 27 malignant) were collected and subjected to multilayer perceptron artificial neural network available on the well know software of IBM SPSS 17 (Statistical Package for the Social Sciences). After many attempts, automatic architecture was decided to be adopted in this research work. Thirteen shape and statistical characteristics of images were considered. The neural network revealed an 89.1 % of correct classification for the training sample and 100 % of correct classification for the test sample. The normalized importance of the considered characteristics showed that kurtosis accounted for 100 % which means that this variable has a substantial effect

... Show More
View Publication Preview PDF
Crossref (3)
Crossref