In this work, prepared new ligand namely 5-(2,4-dichloro-phenyl)-1,3,4-oxadiazole-2-(3H)-thion, was obtained from the 2,4-dichlorobenzoyl chloride with hydrazine, after that reaxtion with CS2/KOH in methanol.
In this research, the theme for employing a simple and sensitive method is to employ a new Schiff base ligand (N’-(4- (dimethyl amino) benzylidene)-3, 5-dinitrobenzohydrazide) to estimate Ni (II) to form orange complex (N-(4-(dimethyl amino) benzylidene)-3, 5-dinitrobenzohydrazide nickel (II) chloride) in acid medium (hydrochloric acid), it gives an absorption peak at the wavelength 485 nm. The preferred conditions were studied to form the complex and obtain the highest absorbance including concentration of Schiff base ligand, the best medium for complex formation, effects of addition sequence on complex formation, the effect of temperature on the absorbance of the complex formed, and the setting time of the formed complex. The obtained r
... Show MoreA new 4-thiazolidinone, substitutedbenzylidene-thiazolidinone and tetrazole were synthesized from thiosemicarbazone and hydrazone. The thiosemicarbazone was prepared by the reaction of thiosemicarbazide with aldehyde derivative from L-ascorbic acid in absolute ethanol using glacial acetic acid as a catalyst. 1, 3-thiazolidin-4-ones were synthesized from the condensation of thiosemicarbazones with chloroacetic acid in presence of anhydrous sodium acetate. A 1, 3- thiazolidine-4-one was reaction with several 4-substitutedaldehydes to produce new derivatives with a double bond at the position-5 of the 4-thiazolidinone ring. While the tetrazole compounds were synthesized by 1, 3-cycloaddition reaction of sodium azide and hydrazone compounds in
... Show MoreA new ligand N-((4-(phenylamino) phenyl) carbamothioyl) acetamide (PCA) was synthesized by reaction of (4-amino di phenyl amine) with (acetyl isothiocyante) by using acetone as a solvent. The prepared ligand(PCA) has been characterization by elemental analysis (CHNS), infrared(FT-IR),electronic spectral (UV-Vis)&1H,13C- NMR spectra. Some Divalent Metal ion complexes of ligand (PCA) were prepared and spectroscopic studies by infrared(FT-IR), electronic spectral (UV-Vis), molar conductance, magnetic susceptibility and atomic absorption. The results measured showed the formula ofFall prepared complexes were [M (PCA)2 Cl2] (M+2 = Mn, Co, Ni, CU, Zn, Cd &Hg),the proposed geometrical structure for all complexes wereeoctahedral.
Polycyclicacetal was prepared by the reaction of PEG with 4-nitrobenzaldehyde. Cobalt was used for producing a polymer metal complex and solution casting was used to produce a polymer blend including nano chitosan. All produced compounds have been characterized by FT-IR, DSC/ TGA, and SEM techniques as well as biological activity. The production of polyacetal is illustrated by the FT-IR analysis. The DSC/TGA results indicate the prepared polymer blends' thermal stability. Staphylococcus aureas, Klebsiella pneumoniae, Bacillus subtilis, and Escherichia coli were the four types of bacteria selected to study and evaluate the antibacterial activity of produced polyacetal, its metal complex, and polymer blend. Results indicates that ther
... Show MoreHeterogeneous organic compounds play an important role in our daily life as they contribute in many medical and industrial fields and are in continuous development as a result of the preparation of new derivatives with different properties. From this premise, the goal of this work appears, which is preparation of (four, five, six, and seven) membered ring systems derived from furfural, by its reaction with different aromatic aldehydes, and record their antioxidant activity by using free radical scavenging method of DPPH radicals. The new ring systems are synthesized by reacting the prepared Schiff-bases with different ring closure agents (chloroacetyl chloride, mercaptoaceticacid, anthranilic acid, and phthalic anhydride), the prep
... Show MoreCopper oxide (CuO) nanoparticles were synthesized through the thermal decomposition of a copper(II) Schiff-base complex. The complex was formed by reacting cupric acetate with a Schiff base in a 2:1 metal-to-ligand ratio. The Schiff base itself was synthesized via the condensation of benzidine and 2-hydroxybenzaldehyde in the presence of glacial acetic acid. This newly synthesized symmetric Schiff base served as the ligand for the Cu(II) metal ion complex. The ligand and its complex were characterized using several spectroscopic methods, including FTIR, UV-vis, 1H-NMR, 13C-NMR, CHNS, and AAS, along with TGA, molar conductivity and magnetic susceptibility measurements. The CuO nanoparticles were produced by thermally decomposing the
... Show MoreCopper oxide (CuO) nanoparticles were synthesized through the thermal decomposition of a copper(II) Schiff-base complex. The complex was formed by reacting cupric acetate with a Schiff base in a 2:1 metal-to-ligand ratio. The Schiff base itself was synthesized via the condensation of benzidine and 2-hydroxybenzaldehyde in the presence of glacial acetic acid. This newly synthesized symmetric Schiff base served as the ligand for the Cu(II) metal ion complex. The ligand and its complex were characterized using several spectroscopic methods, including FTIR, UV-vis, 1H-NMR, 13C-NMR, CHNS, and AAS, along with TGA, molar conductivity and magnetic susceptibility measurements. The CuO nanoparticles were produced by thermally decomposing the
... Show MoreComplexes of Cr(III)andNi(II) ions with phthalate sulphanilate snthranillate hippurte and glycinate ions have been preparcd then the Nephelauxetic
Forty one isolates of genus Proteus were collected from 140 clinical specimens such as urine, stool, wound, burn, and ear swabs from patients of both sex. These isolates were identified to three Proteus spp. P. mirabilis, P. vulgaris and P. penneri .The ability of these bacteria to produce L-asparaginase II by using semi quantitative and quantitative methods was determined. P. vulgaris Pv.U.92 was distinguished for high level of L-asparaginase II production with specific activity 1.97 U/mg. Optimum conditions for enzyme production were determined; D medium with 0.3% of L-asparagine at pH 7.5 with temperature degree 35°C for incubation. Ultrasonication was used to destroy the P. vulgaris Pv.U.92 cells then ASNase II was extracted and pu
... Show More