12 membered Schiff base macrocyclic ligands, 6,7,14,15-tetra phenyl-1,2,3,4, 4a,8a, 9,10, 11,12, 12a,16a-dodecahydro dibenzo [b,h] [1,4,7,10] tetraazacyclododecine L1, and 14 membered Schiff base macrocyclic ligands, 6,8,15,17-tetramethyl-1,2,3,4, 4a,7,9a, 10,11,12,13,13a,16,18a-tetra decahydro dibenzo[b,i] [1, 4,8,11] cyclotetradecine tetraaza L2, 7,16-bis(2,4- dichloro benz ylidene)-6,8,15,17-tetra methyl-1,2,3,4, 4a,7,9a, 10, 11,12, 13, 13a,16,18a-tetra deca hydro dibenzo [b,i] [1,4,8,11] tetra azacyclo tetra decine L3 and 6,8,15, 17-tetramethyl-1,2,3, 4,4a,9a,10, 11,12,13,13a,18a-dodecahydro dibenzo [b,i] [1,4,8, 11] tetraazacyclo tetradecine (7,16-diylidene) bis(methanylyli dene) bis (N,N-dimethylaniline) L4 were synthesized by condensation reaction between diketone and aliphatic diamines. The metal complexes of the types, [ML1Cl2], [ML2Cl2], [ML3Cl2] and [ML4Cl2] [M= Co(II), Ni(II), Cu(II), Mn(II), Hg(II), and Fe(II)] were prepared by interaction of ligands, L1, L2, L3 and L4 with metal(II) ions. The ligands and their complexes were characterized by elemental analysis, magnetic susceptibility, conductivity measurements and IR, 1H and 13C NMR, UV–Vis spectral studies. The thermal stability of the complexes was also studied by TGA analyses. These studies show that all the complexes have octahedral arrangement around the metal ions. We used CB-Dock, a novel blind docking technique that aims to improve docking precision. With the aid of the cutting-edge docking program Autodock Vina, software online, molecular docking studies were used to evaluate the biological significance of the synthesized ligands and identify the probable and efficient binding mechanisms between the various ligands and the active site of the receptor protein. Affinity binding of both Ligand L3 and L4 to Penicillin binding protein 2x (chain B) with PDB 1PYY were much better than to Penicillin binding protein 2B (chain A) with PDB 1WAE due to the presence of hydrogen and halogen bonds. Therefore, they can be more recommended for drug design study to inhibit bacterial growth due their bioavailability. The biological activities of all compounds were evaluated like in-vitro antioxidant activity or percentage free radical scavenging effect via DPPH method against standard ascorbic acid and in vitro anticancer activity via MTT assay against colon cancer cell lines. Results of the biological activities showed that complex CuL3Cl2 exhibited the highest anti-cancer activity against colon cancer cell line i.e. 70.72±6.3 μg/ml among other copper complexes whereas compound CuL3Cl2 showed best antioxidant activity against ascorbic acid i.e. 75.07±1.96 μg/ml. While the biological activities showed that complex CuL4Cl2 exhibited the highest anti-cancer activity against colon cancer cell line i.e. 42.05±7.4 μg/ml among other copper complexes whereas compound CuL4Cl2 showed best antioxidant activity against ascorbic acid i.e. 65.47±1.37 μg/ml.
Several new derivatives of 1, 2, 4-triazoles linked to phthalimide moiety were synthesized through following multisteps. The first step involved preparation of 2, 2-diphthalimidyl ethanoic acid [2] via reaction of two moles of phthalimide with dichloroacetic acid. Treatment of the resulted imide with ethanol in the second step afforded 2, 2-diphthalimidyl ester [3] which inturn was introduced in reaction with hydrazine hydrate in the third step, producing the corresponding hydrazide derivative [4]. The synthesized hydazide was introduced in different synthetic paths including treatment with carbon disulfide in alkaline solution then with hydrazine hydrate to afford the new 1, 2, 4-triazole [10]. Reaction of compound [10] with different alde
... Show MoreIn this study, chalcones were synthesis by condensing 2-acetylpyridine with aromatic aldehyde derivatives in dilute ethanolic potassium hydroxide solution at room temperature according to Claisen-Schmidt condensation. After that, new heterocyclic derivatives such as Oxazine, Thiazine and Pyrazol were synthesis by reaction between chalcones with urea, thiourea and hydrazine hydrate respectively scheme 1. All these compounds wrer characterization by FTIR, 1H-NMR spectroscopy and elemental analysis.
The new symmetry pyromellitdiimide [VII]a-c,n were synthesized by two-step reactions from the corresponding pyromellitic dianhydride . A new symmetrical amic acid [VI]a-c,n was synthesized by the reaction of pyromellitic dianhydride with different heterocyclic amines in dry acetone . The second reaction step includes intramolecular cyclization of amic acid in the presence of sodium acetate -acetic anhydride system at 850C. Structures of the synthesized compounds have been ascertained by their melting points , C.H.N analysis , UV-Vis, FTIR and 1HNMR spectroscopy.
In contrast to the classical antibacterial sulfa drugs that are unsubstituted or monosubstituted, our newly synthesized analogs were designed to obtain sulfonamide moiety containing disubstituted hetero nitrogen atom. These compounds were formed successfully by chlorosulfonation of acetanilide and the product was treated with different cyclic amines and finally amide hydrolysis was necessary to get agents that were analyzed for IR, UV, CHN, melting points and solubility. At last, we studied their antibacterial activity on certain types of bacteria and we noticed the inactivity due to possible steric factor. Principly, this means these products have no inhibiting action against the used microbes.
Mixed ligand metal complexes of CrIII, FeIII,II, NiII and CuII have been synthesized using 5-chlorosalicylic acid (5-CSA) as a primary ligand and L-Valine (L-Val) as secondary ligand. The metal complexes have been characterized by elemental analysis, electrical conductance, magnetic susceptibility measurements and spectral studies. The electrical conductance studies of the complexes indicate their electrolytic nature. Magnetic susceptibility measurements revealed paramagnetic nature of the all complexes. Bonding of the metal ion through –OHand –COOgroups of bidentate to the 5-chlorosalicylic acid and through –NH2 and –COOgroups of bidentate to the L-valine by FT-IR studies . The agar diffusion method has been used to study the antib
... Show MoreMixed ligand metal complexes of CrIII, FeIII,II, NiII and CuII have been synthesized using 5-chlorosalicylic acid (5-CSA) as a primary ligand and L-Valine (L-Val) as secondary ligand. The metal complexes have been characterized by elemental analysis, electrical conductance, magnetic susceptibility measurements and spectral studies. The electrical conductance studies of the complexes indicate their electrolytic nature. Magnetic susceptibility measurements revealed paramagnetic nature of the all complexes. Bonding
Some metal ions (Mn
+2
, Fe
+2
,Co
+2
,Ni
+2
,Cu
+2
, Cd
+2
and Hg
+2
) complexes of N-acetyl
Tryptophan( AcetrpH) and (2, 2′-bipyridine) (2, 2′-Bipy)have been synthesized and then
characterized on the basis of their FT-IR, UV-Vis spectroscopy, magneticsuscptibity
conductivity measurements and atomic absorption;from the results obtained and the propsed
molecular structure for these complexes as octahedral geometry,the following general formula
has been given for the prepared complexes.
[M
+n
(Acetrp)2(2, 2′-Bipy)].
Where M= Mn
+2
, Fe
+2
,Co
+2
,Ni
+2
,Cu
+2
, Cd
+2
,Hg
+2
(Acetrp)
-=Ligand ion(N-acetyl