Capillary pressure is a significant parameter in characterizing and modeling petroleum reservoirs. However, costly laboratory measurements may not be sufficiently available in some cases. The problem amplifies for carbonate reservoirs because relatively enormous capillary pressure curves are required for reservoir study due to heterogeneity. In this work, the laboratory measurements of capillary pressure and formation resistivity index were correlated as both parameters are functions of saturation. Forty-one core samples from an Iraqi carbonate reservoir were used to develop the correlation according to the hydraulic flow units concept. Flow zone indicator (FZI) and Pore Geometry and Structure (PGS) approaches were used to identify the reservoir hydraulic flow units. The experimentally derived correlations can be used to predict capillary pressure from resistivity, which is widely available from well-logs. FZI and PGS rock typing methods were applied to characterize the reservoir rock types. For both methods, the log-log plot of Leverett J-function and capillary pressure versus resistivity index for each rock type represent a power-law model relationship between these parameters. Despite the good permeability-porosity prediction results, the FZI approach did not yield a good correlation between J and I. PGS resulted in a better performance in terms of both permeability-porosity prediction and Pc with I correlation because PGS honors the pore geometry and structure relationship with the mean hydraulic radius more than FZI. This work introduces a new correlating approach that aims to assist in reservoir characterization and simulation.
The main purpose of the work is to analyse studies of themagnetohydrodynamic “MHD” flow for a fluid of generalized Burgers’ “GB” within an annular pipe submitted under impulsive pressure “IP” gradient. Closed form expressions for the velocity profile, impulsive pressure gradient have been taken by performing the finite Hankel transform “FHT” and Laplace transform “LT” of the successive fraction derivatives. As a result, many figures are planned to exhibit the effects of (different fractional parameters “DFP”, relaxation and retardation times, material parameter for the Burger’s fluid) on the profile of velocity of flows. Furthermore, these figures are compa
Empirical equation has been presented to predict the optimum hydrodynamic
pressure gradient with optimum mud flow rate (one equation) of five Iraqi oil wells
to obtain the optimum carrying capacity of the drilling fluid ( optimum transport
cuttings from the hole to the surface through the annulus).
This equation is a function of mud flow rate, mud density and penetration
rate without using any charts or graphs.
The correlation coefficient accuracy is more than 0.9999.
In recent years the interest in fractured reservoirs has grown. The awareness has increased analysis of the role played by fractures in petroleum reservoir production and recovery. Since most Iraqi reservoirs are fractured carbonate rocks. Much effort was devoted to well modeling of fractured reservoirs and the impacts on production. However, turning that modeling into field development decisions goes through reservoir simulation. Therefore accurate modeling is required for more viable economic decision. Iraqi mature field being used as our case study. The key point for developing the mature field is approving the reservoir model that going to be used for future predictions. This can
Natural fractures provide an important reservoir space and migration channels for oil and gas reservoirs and control the reservoir potential. Therefore, it is essential to understand the methods for identifying accurate reservoir permeability and characterizing reservoir fractures. In particular, using conventional measurements to identify permeability and characterize fractures is very expensive. While using conventional logging data is very challenging, and an efficient characterization correlation method is urgently needed. In this paper, we have evaluated reservoir potential based on the sensitivity of sonic scanner tools to fluid mobility, maximum stress direction, and fractures presence. This tool provides a continuous estimat
... Show MoreThe term "tight reservoir" is commonly used to refer to reservoirs with low permeability. Tight oil reservoirs have caused worry owing to its considerable influence upon oil output throughout the petroleum sector. As a result of its low permeability, producing from tight reservoirs presents numerous challenges. Because of their low permeability, producing from tight reservoirs is faced with a variety of difficulties. The research aim is to performing hydraulic fracturing treatment in single vertical well in order to study the possibility of fracking in the Saady reservoir. Iraq's Halfaya oil field's Saady B reservoir is the most important tight reservoir. The diagnostic fracture injection test is determined for HF55using GOHFER soft
... Show MoreNanofluids, liquid suspensions of nanoparticles (NPs) dispersed in deionized (DI) water, brine, or surfactant micelles, have become a promising solution for many industrial applications including enhanced oil recovery (EOR) and carbon geostorage. At ambient conditions, nanoparticles can effectively alter the wettability of the strongly oil-wet rocks to water-wet. However, the reservoir conditions present the greatest challenge for the success of this application at the field scale. In this work, the performance of anionic surfactant-silica nanoparticle formulation on wettability alteration of oil-wet carbonate surface at reservoir conditions was investigated. A high-pressure temperature vessel was used to apply nano-modification of oil-wet
... Show MoreThe purpose of this research was to investigate the beneficial effects of phosphatidylcholine in reducing changes in both lipid and protein profiles in addition to atherogenic index in adult rats with fructose-induced metabolic syndrome. Thirty-six mature Wistar Albino female rats (Rattus norvegicus) (aged 12-15 weeks and weighing 200±10 g) were divided randomly into four groups (G1, G2, G3, and G4); then variable treatments were orally administered for 62 days as follows: G1 (Control group), received distilled water; G2, treated with phosphatidylcholine (PC) orally (1 g/kg BW); G3 (Fr), orally dosed with 40% fructose and 25% fructose mixed with drinking water; G4 (Fr+PC), were also intubated with 40% fr
... Show MoreThe efficiency evaluation of the railway lines performance is done through a set of indicators and criteria, the most important are transport density, the productivity of enrollee, passenger vehicle production, the productivity of freight wagon, and the productivity of locomotives. This study includes an attempt to calculate the most important of these indicators which transport density index from productivity during the four indicators, using artificial neural network technology. Two neural networks software are used in this study, (Simulnet) and (Neuframe), the results of second program has been adopted. Training results and test to the neural network data used in the study, which are obtained from the international in
... Show MoreThis study aims to derive a sustainable human development index for the Arab countries by using the principal components analysis, which can help in reducing the number of data in the case of multiple variables. This can be relied upon in the interpretation and tracking sustainable human development in the Arab countries in the view of the multiplicity of sustainable human development indicators and its huge data, beside the heterogeneity of countries in a range of characteristics associated with indicators of sustainable human development such as area, population, and economic activity. The study attempted to use the available data to the selected Arab countries for the recent years. This study concluded that a single inde
... Show More