This Book is intended to be textbook studied for undergraduate course in multivariate analysis. This book is designed to be used in semester system. In order to achieve the goals of the book, it is divided into the following chapters (as done in the first edition 2019). Chapter One introduces matrix algebra. Chapter Two devotes to Linear Equation System Solution with quadratic forms, Characteristic roots & vectors. Chapter Three discusses Partitioned Matrices and how to get Inverse, Jacobi and Hessian matrices. Chapter Four deals with Multivariate Normal Distribution (MVN). Chapter Five concern with Joint, Marginal and Conditional Normal Distribution, independency and correlations. While the revised new chapters have been added (as the current second edition 2024). Chapter six introduces mean vector estimation and covariance matrix estimation. Chapter seven devotes to testing concerning mean: one sample mean, and two sample mean. Chapter eight discusses special case of factorial analysis which is principal components analysis. Chapter nine deals with discriminant analysis. While chapter ten deals with cluster analysis. Many solved examples are intended in this book, in addition to a variety of unsolved relied problems at the end of each chapter to enrich the statistical knowledge of the readers.
In this paper, the reliability and scheduling of maintenance of some medical devices were estimated by one variable, the time variable (failure times) on the assumption that the time variable for all devices has the same distribution as (Weibull distribution.
The method of estimating the distribution parameters for each device was the OLS method.
The main objective of this research is to determine the optimal time for preventive maintenance of medical devices. Two methods were adopted to estimate the optimal time of preventive maintenance. The first method depends on the maintenance schedule by relying on information on the cost of maintenance and the cost of stopping work and acc
... Show MoreTruncated distributions arise naturally in many practical situations. It’s a conditional distribution that develops when the parent distribution's domain is constrained to a smaller area. The distribution of a right truncated is one of the types of a single truncated that is restricted within a specific field and usually occurs when the specified period for the study is complete. Hence, this paper introduces Right Truncated Inverse Generalized Rayleigh Distribution (RTIGRD) with two parameters is introduced. Then, provided some properties such as; (probability density function, cumulative distribution function (CDF), survival function, hazard function, rth moment, mean, variance, Moment Generating Function, Skewness, kurtosi
... Show MoreThe effect of short range correlations on the inelastic Coulomb form factors for excited +2 states (1.982, 3.919, 5.250 and 8.210MeV) and +4 states (3.553, 7.114, 8.960 and 10.310 MeV) in O18 is analyzed. This effect (which depends on the correlation parameterβ) is inserted into the ground state charge density distribution through the Jastrow type correlation function. The single particle harmonic oscillator wave function is used with an oscillator size parameter .b The parameters β and b are adjusted for each excited state separately so as to reproduce the experimental root mean square charge radius of .18O The nucleusO18 is considered as an inert core of C12 with two protons and four neutrons distributed over 212521211sdp−− activ
... Show MoreAl Huweizah Marsh is considered as the largest marsh at the southern part of Iraq. About one third of the marsh is located within the Iranian territory. Iran began to construct earth dikes along the Iraqi-Iranian international borders to separate the Iranian part of the marsh. The electrical conductivity, EC, value was adopted to be the indicator for the water salinity within the marsh. A steady two-dimensional water quality routing model was implemented by using the RMA2 and RMA4 softwares within the SMS computer package to estimate the distribution of the
EC values within the marsh seasonally during the wet, moderate and dry water years. The EC distribution Patterns were estimated considering the expected two cases of the marsh futu
Most of the Weibull models studied in the literature were appropriate for modelling a continuous random variable which assumes the variable takes on real values over the interval [0,∞]. One of the new studies in statistics is when the variables take on discrete values. The idea was first introduced by Nakagawa and Osaki, as they introduced discrete Weibull distribution with two shape parameters q and β where 0 < q < 1 and b > 0. Weibull models for modelling discrete random variables assume only non-negative integer values. Such models are useful for modelling for example; the number of cycles to failure when components are subjected to cyclical loading. Discrete Weibull models can be obta
... Show MoreThe capacity factor is the main factor in assessing the efficiency of wind Turbine. This paper presents a procedure to find the optimal wind turbine for five different locations in Iraq based on finding the highest capacity factor of wind turbine for different locations. The wind data for twelve successive years (2009-2020) of five locations in Iraq are collected and analyzed. The longitudes and latitudes of the candidate sites are (44.3661o E, 33.3152o N), (47.7738o E, 30.5258o N), (45.8160o E, 32.5165o N), (44.33265o E, 32.0107o N) and (46.25691o E, 31.0510o N) for Baghdad, Basrah, Al-Kut, Al-Najaf, and Al-Nasiriyah respectively. The average wind velocity, standard deviation, Weibull shape and scale factors, and probability density functi
... Show MoreThis work, deals with Kumaraswamy distribution. Kumaraswamy (1976, 1978) showed well known probability distribution functions such as the normal, beta and log-normal but in (1980) Kumaraswamy developed a more general probability density function for double bounded random processes, which is known as Kumaraswamy’s distribution. Classical maximum likelihood and Bayes methods estimator are used to estimate the unknown shape parameter (b). Reliability function are obtained using symmetric loss functions by using three types of informative priors two single priors and one double prior. In addition, a comparison is made for the performance of these estimators with respect to the numerical solution which are found using expansion method. The
... Show MoreIn this paper, we introduce a new class of Weighted Rayleigh Distribution based on two parameters, one is the scale parameter and the other is the shape parameter introduced in Rayleigh distribution. The main properties of this class are derived and investigated . The moment method and least square method are used to obtain estimators of parameters of this distribution. The probability density function, survival function, cumulative distribution and hazard function are derived and found. Real data sets are collected to investigate two methods that depend on in this study. A comparison is made between two methods of estimation and clarifies that MLE method is better than the OLS method by using the mea
... Show MoreThe present paper concern with minimax shrinkage estimator technique in order to estimate Burr X distribution shape parameter, when prior information about the real shape obtainable as original estimate while known scale parameter.
Derivation for Bias Ratio, Mean squared error and the Relative Efficiency equations.
Numerical results and conclusions for the expressions mentioned above were displayed. Comparisons for proposed estimator with most recent works were made.
This paper aims to decide the best parameter estimation methods for the parameters of the Gumbel type-I distribution under the type-II censorship scheme. For this purpose, classical and Bayesian parameter estimation procedures are considered. The maximum likelihood estimators are used for the classical parameter estimation procedure. The asymptotic distributions of these estimators are also derived. It is not possible to obtain explicit solutions of Bayesian estimators. Therefore, Markov Chain Monte Carlo, and Lindley techniques are taken into account to estimate the unknown parameters. In Bayesian analysis, it is very important to determine an appropriate combination of a prior distribution and a loss function. Therefore, two different
... Show More