Polypyrrole/silver (PPy/Ag) nanocomposites was synthesized via a chemical oxidative method. The AFM analysis is performed to study the surface roughness, morphology and size distribution of the PPy particles and PPy-ag nanocomposites. The results indicated that as the concentration of Ag in the nanocomposite increases, the roughness also increases. The size of nanoparticles was also evaluated and found in the range of 15 nm to 125 nm. The PPy/Ag nanocomposites exhibited an effectiveness against Gram-negative Escherichia coli showing an inhibition zone of 4mm and displayed poor efficacy against Gram-positive Staphylococcus aureus. Based on given adequate antibacterial characteristics of PPy/Ag nanocomposites, it can be identified as a promising material in biomedical applications.
This paper presents the effect of Cr doping on the optical and structural properties of TiO2 films synthesized by sol-gel and deposited by the dip- coating technique. The characteristics of pure and Cr-doped TiO2 were studied by absorption and X-ray diffraction measurement. The spectrum of UV absorption of TiO2 chromium concentrations indicates a red shift; therefore, the energy gap decreases with increased doping. The minimum value of energy gap (2.5 eV) is found at concentration of 4 %. XRD measurements show that the anatase phase is shown for all thin films. Surface morphology measurement by atomic force microscope (AFM) showed that the roughness of thin films decrease with doping and has a minimum value with 4 wt % doping ratio.
This paper aims to find new analytical closed-forms to the solutions of the nonhomogeneous functional differential equations of the nth order with finite and constants delays and various initial delay conditions in terms of elementary functions using Laplace transform method. As well as, the definition of dynamical systems for ordinary differential equations is used to introduce the definition of dynamical systems for delay differential equations which contain multiple delays with a discussion of their dynamical properties: The exponential stability and strong stability
Reservoir characterization is an important component of hydrocarbon exploration and production, which requires the integration of different disciplines for accurate subsurface modeling. This comprehensive research paper delves into the complex interplay of rock materials, rock formation techniques, and geological modeling techniques for improving reservoir quality. The research plays an important role dominated by petrophysical factors such as porosity, shale volume, water content, and permeability—as important indicators of reservoir properties, fluid behavior, and hydrocarbon potential. It examines various rock cataloging techniques, focusing on rock aggregation techniques and self-organizing maps (SOMs) to identify specific and
... Show MoreDifferent percents(1.0,2.5,5.0 and 10)wt%of MgO powders were added to ZnO powder to study their effects on the physical properties of ZnO.Density, porpsity and water absorption of ZnO were decreased as MgO weigth percentage content increased. The values of vickers hardneess have double values especially at 1.0 wt % of MgO.
Nanoparticles of copper sulfide have been prepared by simple reaction between using copper nitrate with different concentrations ratio 0.1, 0.3, and 0.5 mM, thiourea by a simple chemical route. The prepared Nano powders have been deposited onto glass substrates by casting method at 60°C. The structure of the product Nano- films has been studied by x-ray diffraction, where the patterns showed that all the samples have a hexagonal structure of covellite copper sulfide with the average crystalline sizes 14.07- 16.51 nm. The morphology has been examined by atomic force microscopy, and field emission scan electron microscopy. The AFM images showed particles with almost spherical and rod shapes with average diameter sizes of 49.11- 90.64 nm.
... Show MorePorous silicon (PS) layers are prepared by anodization for
different etching current densities. The samples are then
characterized the nanocrystalline porous silicon layer by X-Ray
Diffraction (XRD), Atomic Force Microscopy (AFM), Fourier
Transform Infrared (FTIR). PS layers were formed on n-type Si
wafer. Anodized electrically with a 20, 30, 40, 50 and 60 mA/cm2
current density for fixed 10 min etching times. XRD confirms the
formation of porous silicon, the crystal size is reduced toward
nanometric scale of the face centered cubic structure, and peak
becomes a broader with increasing the current density. The AFM
investigation shows the sponge like structure of PS at the lower
current density porous begi
This study was aimed to isolate and identify Saccharomyces boulardii from Mangosteen fruits (Garcinia mangostana L.) by traditional and molecular identification methods To get safe and healthy foods probiotics for use, The isolates and two commercial strains were subjected to cultural, morphological and biochemical tests, The colonies of the isolates were spherical, smooth, mucoidal, dull and white to cream colour on SD agar media .The shape of cells was globose to ovoid and sometimes with budding, in a single form or clustered like a beehive. The isolates and two commercial strains were unable to metabolized galactose and lactose , Results shows that all isolates were unable to utilize potassium nitrate and not grow in the presence of (
... Show MoreThe size and the concentration of the gold nanoparticles (GNPs)
synthesized in double distilled deionized water (DDDW) have been
found to be affected by the laser energy and the number of pulses.
The absorption spectra of the nanoparticles DDDW, and the
surface plasmon resonance (SPR) peaks were measured, and found to
be located between (509 and 524)nm using the UV- Vis
spectrophotometer. SPR calculations, images of transmission
electron microscope, and dynamic light scattering (DLS) method
were used to determine the size of GNPs, which found to be ranged
between (3.5 and 27) nm. The concentrations of GNPs in colloidal
solutions found to be ranged between (37 and 142) ppm, and
measured by atomic absorptio
The behaviour of certain dynamical nonlinear systems are described in term as chaos, i.e., systems' variables change with the time, displaying very sensitivity to initial conditions of chaotic dynamics. In this paper, we study archetype systems of ordinary differential equations in two-dimensional phase spaces of the Rössler model. A system displays continuous time chaos and is explained by three coupled nonlinear differential equations. We study its characteristics and determine the control parameters that lead to different behavior of the system output, periodic, quasi-periodic and chaos. The time series, attractor, Fast Fourier Transformation and bifurcation diagram for different values have been described.