A stochastic process {Xk, k = 1, 2, ...} is a doubly geometric stochastic process if there exists the ratio (a > 0) and the positive function (h(k) > 0), so that {α 1 h-k }; k ak X k = 1, 2, ... is a generalization of a geometric stochastic process. This process is stochastically monotone and can be used to model a point process with multiple trends. In this paper, we use nonparametric methods to investigate statistical inference for doubly geometric stochastic processes. A graphical technique for determining whether a process is in agreement with a doubly geometric stochastic process is proposed. Further, we can estimate the parameters a, b, μ and σ2 of the doubly geometric stochastic process by using the least squares estimate for Xk and ln Xk, as well as the linear regression method, where μ and σ2 are the mean and variance of X1, respectively. A real-world example is used to demonstrate the process. Furthermore, the estimators' output is evaluated using a real-world example. © 2021 DAV College. All rights reserved.
In this paper, we introduce three robust fuzzy estimators of a location parameter based on Buckley’s approach, in the presence of outliers. These estimates were compared using the variance of fuzzy numbers criterion, all these estimates were best of Buckley’s estimate. of these, the fuzzy median was the best in the case of small and medium sample size, and in large sample size, the fuzzy trimmed mean was the best.
Through recent years many researchers have developed methods to estimate the self-similarity and long memory parameter that is best known as the Hurst parameter. In this paper, we set a comparison between nine different methods. Most of them use the deviations slope to find an estimate for the Hurst parameter like Rescaled range (R/S), Aggregate Variance (AV), and Absolute moments (AM), and some depend on filtration technique like Discrete Variations (DV), Variance versus level using wavelets (VVL) and Second-order discrete derivative using wavelets (SODDW) were the comparison set by a simulation study to find the most efficient method through MASE. The results of simulation experiments were shown that the performance of the meth
... Show MoreImproving the performance of visual computing systems is achieved by removing unwanted reflections from a picture captured in front of a glass. Reflection and transmission layers are superimposed in a linear form at the reflected photographs. Decomposing an image into these layers is often a difficult task. Plentiful classical separation methods are available in the literature which either works on a single image or requires multiple images. The major step in reflection removal is the detection of reflection and background edges. Separation of the background and reflection layers is depended on edge categorization results. In this paper a wavelet transform is used as a prior estimation of background edges to sepa
... Show MoreMultiple myeloma is hematological disease produces many complications in the bone, kidney, neural and other complications. The study aims to measure serum biomolecules like fetuin-A and resistin and determined the possibility to use these biomarkers as disease predictor. blood samples were isolated from 58 patients and 24 sex and age-matched control, serum then isolated, and proper ELISA kit then used to a determined level of B2 microglobulin, resistin, and fetuin-A. The result demonstrated significant increase in B2 microglobulin, fetuin-A and resistin in patients compare to control (1.3470.714 vs. 0.9130.253), p = 0.000, (14.00310.352 vs. 9.2594.264), p= 0.005, (1.9673.595 vs. 0.6040.622), p = 0.009, respectively. &
... Show MoreThis research deals with a shrinking method concernes with the principal components similar to that one which used in the multiple regression “Least Absolute Shrinkage and Selection: LASS”. The goal here is to make an uncorrelated linear combinations from only a subset of explanatory variables that may have a multicollinearity problem instead taking the whole number say, (K) of them. This shrinkage will force some coefficients to equal zero, after making some restriction on them by some "tuning parameter" say, (t) which balances the bias and variance amount from side, and doesn't exceed the acceptable percent explained variance of these components. This had been shown by MSE criterion in the regression case and the percent explained v
... Show MoreBackground: Chronic myelogenous leukemia is a malignant hematological disease of hematopoietic stem cells. It is difficult to adapt treatment to each patient's risk level because there are currently few clinical tests and no molecular diagnostics that may predict a patient's clock for the advancement of CML at the time of chronic phase diagnosis. Biomarkers that can differentiate people based on the outcome at diagnosis are needed for blast crisis prevention and response improvement. Objective: This study is an effort to exploit the SLC25A3 gene as a potential biomarker for CML. Methods: RT-qPCR was applied to assess the expression levels of the SLC25A3 gene. Results: In comparison to the mean ΔCt of the control group, which was found to b
... Show MoreUsing the Neural network as a type of associative memory will be introduced in this paper through the problem of mobile position estimation where mobile estimate its location depending on the signal strength reach to it from several around base stations where the neural network can be implemented inside the mobile. Traditional methods of time of arrival (TOA) and received signal strength (RSS) are used and compared with two analytical methods, optimal positioning method and average positioning method. The data that are used for training are ideal since they can be obtained based on geometry of CDMA cell topology. The test of the two methods TOA and RSS take many cases through a nonlinear path that MS can move through that region. The result
... Show MoreUsing the Neural network as a type of associative memory will be introduced in this paper through the problem of mobile position estimation where mobile estimate its location depending on the signal strength reach to it from several around base stations where the neural network can be implemented inside the mobile. Traditional methods of time of arrival (TOA) and received signal strength (RSS) are used and compared with two analytical methods, optimal positioning method and average positioning method. The data that are used for training are ideal since they can be obtained based on geometry of CDMA cell topology. The test of the two methods TOA and RSS take many cases through a nonlinear path that MS can move through that region. The result
... Show MoreThe estimation of the stressÙ€ strength reliability of Invers Kumaraswamy distribution will be introduced in this paper based on the maximum likelihood, moment and shrinkage methods. The mean squared error has been used to compare among proposed estimators. Also a Monte Carlo simulation study is conducted to investigate the performance of the proposed methods in this paper.