A stochastic process {Xk, k = 1, 2, ...} is a doubly geometric stochastic process if there exists the ratio (a > 0) and the positive function (h(k) > 0), so that {α 1 h-k }; k ak X k = 1, 2, ... is a generalization of a geometric stochastic process. This process is stochastically monotone and can be used to model a point process with multiple trends. In this paper, we use nonparametric methods to investigate statistical inference for doubly geometric stochastic processes. A graphical technique for determining whether a process is in agreement with a doubly geometric stochastic process is proposed. Further, we can estimate the parameters a, b, μ and σ2 of the doubly geometric stochastic process by using the least squares estimate for Xk and ln Xk, as well as the linear regression method, where μ and σ2 are the mean and variance of X1, respectively. A real-world example is used to demonstrate the process. Furthermore, the estimators' output is evaluated using a real-world example. © 2021 DAV College. All rights reserved.
The purpose of this paper, is to study different iterations algorithms types three_steps called, new iteration,
Support Vector Machines (SVMs) are supervised learning models used to examine data sets in order to classify or predict dependent variables. SVM is typically used for classification by determining the best hyperplane between two classes. However, working with huge datasets can lead to a number of problems, including time-consuming and inefficient solutions. This research updates the SVM by employing a stochastic gradient descent method. The new approach, the extended stochastic gradient descent SVM (ESGD-SVM), was tested on two simulation datasets. The proposed method was compared with other classification approaches such as logistic regression, naive model, K Nearest Neighbors and Random Forest. The results show that the ESGD-SVM has a
... Show MoreLaser scanning has become a popular technique for the acquisition of digital models in the field of cultural heritage conservation and restoration nowadays. Many archaeological sites were lost, damaged, or faded, rather than being passed on to future generations due to many natural or human risks. It is still a challenge to accurately produce the digital and physical model of the missing regions or parts of our cultural heritage objects and restore damaged artefacts. The typical manual restoration can become a tedious and error-prone process; also can cause secondary damage to the relics. Therefore, in this paper, the automatic digital application process of 3D laser modelling of arte
The main objective of" this paper is to study a subclass of holomrphic and univalent functions with negative coefficients in the open unit disk U= defined by Hadamard Product. We obtain coefficients estimates, distortion theorem , fractional derivatives, fractional integrals, and some results.
In this paper, a new form of 2D-plane curves is produced and graphically studied. The name of my daughter "Noor" has been given to this curve; therefore, Noor term describes this curve whenever it is used in this paper. This curve is a form of these opened curves as it extends in the infinity along both sides from the origin point. The curve is designed by a circle/ ellipse which are drawing curvatures that tangent at the origin point, where its circumference is passed through the (0,2a). By sharing two vertical lined points of both the circle diameter and the major axis of the ellipse, the parametric equation is derived. In this paper, a set of various cases of Noor curve are graphically studied by two curvature cases;
... Show MoreThe major target of this paper is to study a confirmed class of meromorphic univalent functions . We procure several results, such as those related to coefficient estimates, distortion and growth theorem, radii of starlikeness, and convexity for this class, n additionto hadamard product, convex combination, closure theorem, integral operators, and neighborhoods.
Channel estimation and synchronization are considered the most challenging issues in Orthogonal Frequency Division Multiplexing (OFDM) system. OFDM is highly affected by synchronization errors that cause reduction in subcarriers orthogonality, leading to significant performance degradation. The synchronization errors cause two issues: Symbol Time Offset (STO), which produces inter symbol interference (ISI) and Carrier Frequency Offset (CFO), which results in inter carrier interference (ICI). The aim of the research is to simulate Comb type pilot based channel estimation for OFDM system showing the effect of pilot numbers on the channel estimation performance and propose a modified estimation method for STO with less numb
... Show More