Despite efforts to contain and manage the SARS-CoV-2 outbreak which was declared a public health emergency of international concern in January 2020 by the World Health Organization (WHO), the COVID-19 pandemic still remains a major global challenge. Patients who display the classical symptoms of the infection are easily identified, tested, isolated and monitored. However, many cases of infected asymptomatic patients have been documented. These patients are not easily identified even though many evidences suggest that they can spread the virus to others. How and why these COVID-19 asymptomatic presentations occur remain unclear. The many theories and views are conjectural, and supporting evidences are still needed. In this review, we described the trend in SARS-CoV-2 viral shedding and susceptibility, providing perspectives on gender differences and asymptomatic patients. We further discussed how genetics, gender, viral inoculum, and pre-existing immunity may influence asymptomatic presentations in COVID-19 infections. We hope that this article improves our understanding of asymptomatic SAR-CoV-2 infection and it sheds light on some salient areas that should be considered as the search for a potent vaccine continues.
Floods caused by dam failures can cause huge losses of life and property, especially in estuarine areas and valleys. In spite of all the capabilities and great improvements reached by man in the construction of dams and their structures, they will remain helpless before the powerful forces of nature, especially those related to tectonic activation, and the occurrence of earthquakes of different intensities.
The region extending from the Ilisu Dam in Turkey to the Mosul Dam in Iraq was chosen as an area for this study, and the HEC-RAS application was used to simulate the collapse of the Ilisu Dam due to a major earthquake, to know the magnitude of the risks and losses that could result
Biodegradation is utilizing microorganisms to degrade materials into products that are safe for the
environment, such as carbon dioxide, water, and biomass. The current study aims to isolate and characterize
bacteria with polyethylene terephthalate (PET) degradation ability isolated from Shatt al-Arab water and
sewage from Basra, the bacteria were identified as Klebsiella pneumonia. According to the findings, the
isolates showed a highly significant difference in degradation of PET (24% during 7 days) and the percent of
degradation increased to 46% at 4 weeks compared to the control. The study also involved determining the
optimum temperature of K. pneumonia growth, which was 37°C, while the preferred
Abstract:
In this study a type of polymeric composites from melting poly propylene as a basic substance with Palm fronds powder were prepared. Evaluation of polymeric composites was done by studying some of it is mechanical properties, which included:Yong modulus (E), Impact Strength (I.S), Brinell hardness (B.H) and Compression Strength (C.S). The polymeric composites were studied before and after reinforcment by comparing between them. There was an increase in resistance of Yong modulus (E), Impact Strength (I.S), Brinell hardness (B.H) and compression Strength (C.S). Also, the effect of some acids were studied such as (HCl, H2
The behaviour of certain dynamical nonlinear systems are described in term as chaos, i.e., systems' variables change with the time, displaying very sensitivity to initial conditions of chaotic dynamics. In this paper, we study archetype systems of ordinary differential equations in two-dimensional phase spaces of the Rössler model. A system displays continuous time chaos and is explained by three coupled nonlinear differential equations. We study its characteristics and determine the control parameters that lead to different behavior of the system output, periodic, quasi-periodic and chaos. The time series, attractor, Fast Fourier Transformation and bifurcation diagram for different values have been described.
In this study, pure SnO2 Nanoparticles doped with Cu were synthesized by a chemical precipitation method. Using SnCl2.2H2O, CuCl2.2H2O as raw materials, the materials were annealed at 550°C for 3 hours in order to improve crystallization. The XRD results showed that the samples crystallized in the tetragonal rutile type SnO2 stage. As the average SnO2 crystal size is pure 9nm and varies with the change of Cu doping (0.5%, 1%, 1.5%, 2%, 2.5%, 3%),( 8.35, 8.36, 8.67, 9 ,7, 8.86)nm respectively an increase in crystal size to 2.5% decreases at this rate and that the crystal of SnO2 does not change with the introduction of Cu, and S
... Show More