Ganciclovir (GCV) is a drug included in BCS-Class III, having high solubility and low permeability. It is a synthetic acyclic nucleoside analog of 2′-deoxyguanosine, considered a potent inhibitor of herpes viruses and cytomegalovirus (CMV) infection. Herpes simplex virus (HSV) infections are very common and are also considered a major cause of corneal blindness. This study intended to advance a pioneering nanostructured lipid carriers (NLCs) system for improving the ocular permeability of GCV. Several procedures were used for the preparation. Cold homogenization, solvent injection, and emulsifi cationultrasonication methods. A mixture of palmitic acid (PA) and oleic acid (OA) as a lipid matrix, cremophore EL, and transcutol HP were used as emulsifi ers. To evaluate the optimum method, the particle size (PS), polydispersity index (PDI), zeta potential (ZP), entrapment effi ciency (EE), and drug loading (DL%) were determined for the prepared NLCs. Due to the decreased particle size value, the polydispersity index, and the high value of EE%, emulsifi cation/ultrasonication outcomes were more practical than cold homogenization and solvent injection procedures. The fi ndings demonstrated that the preparation procedure had a substantial impact on the EE%.The emulsifi cation method can prepare the NLCs of GCV successfully.
An investigation was conducted for the determination of the effects of the forming conditions in the production of Gamma Alumina catalyst support on the crushing strength property. Eight variables were studied , they are ;binder content which is the sodium silicate , Solvent content which is the water, speed of mixing , time of mixing, drying temperature , drying time , calcinations temperature and the calcinations time
Design of the experiments was made by using the response Surface method in Minitab 15 software which supply us 90 experiments .
The results of this investigation show that the crushing strength for the dried Gamma alumina extrudate was affected by the drying temperature and the drying time only and there is no inter
Background: Lowering the amount of iodinated contrast material and tube voltage may increase pulmonary artery opacification and thrombus identification without compromising picture quality.
Objectives: To explore the efficiency of using lower tube voltage and a lower contrast medium dose for conducting computed tomography for pulmonary angiography (CTPA) aiming to increase its accuracy in detecting pulmonary thromboembolism (PTE).
Subjects and Methods:100 patients scheduled for CTPA with a preoperative diagnosis of PTE were grouped into two: group A, (50 patients) got 1 mL/kg at 120 kV and group B, (50 patients) received 0.5 mL/kg at 80 kV.The tec
... Show MoreBackground/objectives: To study the motion equation under all perturbations effect for Low Earth Orbit (LEO) satellite. Predicting a satellite’s orbit is an important part of mission exploration. Methodology: Using 4th order Runge–Kutta’s method this equation was integrated numerically. In this study, the accurate perturbed value of orbital elements was calculated by using sub-steps number m during one revolution, also different step numbers nnn during 400 revolutions. The predication algorithm was applied and orbital elements changing were analyzed. The satellite in LEO influences by drag more than other perturbations regardless nnn through semi-major axis and eccentricity reducing. Findings and novelty/improvement: The results demo
... Show MoreForward-swept wings were researched and introduced to improve maneuverability, control, and fuel efficiency while reducing drag and they are often used alongside canards, to further enhance their characteristics. In this research, the effects of canard dihedral angles on the wing loading of a forward-swept wing in transonic flow conditions were studied, as the wing loading provides a measure of wing’s efficiency (lift/drag). A generic aircraft model from literatures was selected, simulated, and compared to, using CFD software ANSYS/Fluent where the flow equations were solved to calculate the aerodynamic characteristics. The research was carried at two different Mach numbers, 0.6 and 0.9, for five different canard dihedral angles which tra
... Show MoreThis paper presents an investigation to the effect of the forming speed on healing voids that inhabit at various size in an ingot. The study was performed by using finite element method with bilinear isotropic material option, circular type voids were considered. The closure index was able to predict the minimum press force necessary to consolidate voids and the reduction. The simulation was carried out, on circular cross-section lead specials containing a central void of different size. At a time with a flat die, different ratio of inside to outside radius was taken with different speed to find the best result of void closure.
The aim of this work is to detect the best operating conditions that effect on the removal of Cu2+, Zn2+, and Ni2+ ions from aqueous solution using date pits in the batch adsorption experiments. The results have shown that the Al-zahdi Iraqi date pits demonstrated more efficient at certain values of operating conditions of adsorbent doses of 0.12 g/ml of aqueous solution, adsorption time 72 h, pH solution 5.5 ±0.2, shaking speed 300 rpm, and smallest adsorbent particle size needed for removal of metals. At the same time the particle size of date pits has a little effect on the adsorption at low initial concentration of heavy metals. The adsorption of metals increases with increas
... Show MoreThe results of research to reach the conditions that prevents the emergence of primary or secondary voids and achieve worker benefit from molded by almost 100%, which was the situation that cast poured in a mold heated and insulated from all sides to achieve freezing directional full starting from the region remote from the casting and ending then. Has also been compared to the microscopic structure of the resulting castings of various molding conditions, as these conditions have achieved the best sound microscopic structures.