Diabetic kidney disease (DKD) is caused by a variety of processes. As a result, one biomarker is insufficient to represent the complete process. This study Evaluate the diagnostic value of serum kidney injury molecule-1(KIM-1) and cystatin C (CysC) as early biochemical markers of DKD and predictive their sensitivities and specificities as biomarkers of nephropathy in Iraqi type 2 diabetic (T2DM) patients. This cross-sectional study include 161 T2DM patients from Diabetes and Endocrinology Center at Merjan medical city in Babylon. Patients divided according to urinary albumin creatinine ratio(ACR) (Group1:ACR≤30mg/g,Group2:ACR>30mg/g). Random spot urine and fasting blood samples were taken from each patient and urinary ACR, blood glycated hemoglobin(HbA1c), and serum glucose, creatinine(SCr), lipid profile, CysC, KIM-1 were assayed, and the estimated glomerular filtration rat (eGFR) was calculated. When compared to the normoalbuminuric group, the DKD group had significantly greater prevalence of retinopathy, and significantly elevated HbA1c and total cholesterol values. Also had significantly greater serum levels of KIM-1 and CysC, and there is a significant (P-value< 0.01) positive correlation between them. In contrast, GFR was significantly higher in normoalbuminuric group and was significantly negatively correlated with both CysC and KIM-1. Multiple linear regression analysis, found that there were a significant positive association between CysC, KIM-1 and ACR. ROC analysis reveal that eGFR had the highest area under the curve(AUC=0.717), while SCr had the lowest AUC(0.556). In conclusion, Serum KIM-1 and CysC levels consider as early biomarker for DKD along with eGFR that consider the best diagnostic indicator of DKD, Additionally, there is a strong correlation between serum CysC and KIM-1 as well as other renal measures that indicate deteriorating kidney function.
The structure, optical, and electrical properties of SnSe and its application as photovoltaic device has been reported widely. The reasons for interest in SnSe due to the magnificent optoelectronic properties with other encouraging properties. The most applications that in this area are PV devices and batteries. In this study tin selenide structure, optical properties and surface morphology were investigated and studies. Thin-film of SnSe were deposit on p-Si substrates to establish a junction as solar cells. Different annealing temperatures (as prepared, 125,200, 275) °C effects on SnSe thin films were investigated. The structure properties of SnSe was studied through X-ray diffraction, and the results appears the increasing of the peaks
... Show MoreSteganography is defined as hiding confidential information in some other chosen media without leaving any clear evidence of changing the media's features. Most traditional hiding methods hide the message directly in the covered media like (text, image, audio, and video). Some hiding techniques leave a negative effect on the cover image, so sometimes the change in the carrier medium can be detected by human and machine. The purpose of suggesting hiding information is to make this change undetectable. The current research focuses on using complex method to prevent the detection of hiding information by human and machine based on spiral search method, the Structural Similarity Index Metrics measures are used to get the accuracy and quality
... Show MoreThis paper proposed a new method to study functional non-parametric regression data analysis with conditional expectation in the case that the covariates are functional and the Principal Component Analysis was utilized to de-correlate the multivariate response variables. It utilized the formula of the Nadaraya Watson estimator (K-Nearest Neighbour (KNN)) for prediction with different types of the semi-metrics, (which are based on Second Derivative and Functional Principal Component Analysis (FPCA)) for measureing the closeness between curves. Root Mean Square Errors is used for the implementation of this model which is then compared to the independent response method. R program is used for analysing data. Then, when the cov
... Show MoreThe economy is exceptionally reliant on agricultural productivity. Therefore, in domain of agriculture, plant infection discovery is a vital job because it gives promising advance towards the development of agricultural production. In this work, a framework for potato diseases classification based on feed foreword neural network is proposed. The objective of this work is presenting a system that can detect and classify four kinds of potato tubers diseases; black dot, common scab, potato virus Y and early blight based on their images. The presented PDCNN framework comprises three levels: the pre-processing is first level, which is based on K-means clustering algorithm to detect the infected area from potato image. The s
... Show More
It is considered as one of the statistical methods used to describe and estimate the relationship between randomness (Y) and explanatory variables (X). The second is the homogeneity of the variance, in which the dependent variable is a binary response takes two values (One when a specific event occurred and zero when that event did not happen) such as (injured and uninjured, married and unmarried) and that a large number of explanatory variables led to the emergence of the problem of linear multiplicity that makes the estimates inaccurate, and the method of greatest possibility and the method of declination of the letter was used in estimating A double-response logistic regression model by adopting the Jackna
... Show MoreRecovery of time-dependent thermal conductivity has been numerically investigated. The problem of identification in one-dimensional heat equation from Cauchy boundary data and mass/energy specification has been considered. The inverse problem recasted as a nonlinear optimization problem. The regularized least-squares functional is minimised through lsqnonlin routine from MATLAB to retrieve the unknown coefficient. We investigate the stability and accuracy for numerical solution for two examples with various noise level and regularization parameter.
Data-driven models perform poorly on part-of-speech tagging problems with the square Hmong language, a low-resource corpus. This paper designs a weight evaluation function to reduce the influence of unknown words. It proposes an improved harmony search algorithm utilizing the roulette and local evaluation strategies for handling the square Hmong part-of-speech tagging problem. The experiment shows that the average accuracy of the proposed model is 6%, 8% more than HMM and BiLSTM-CRF models, respectively. Meanwhile, the average F1 of the proposed model is also 6%, 3% more than HMM and BiLSTM-CRF models, respectively.