Semliki Forest Virus (SFV), a member of the Alphavirus genus in the Togaviridae family, is a small-enveloped, positive-sense single-stranded RNA (+ssRNA) virus. The virus is spread by mosquitos and can infect humans, resulting in mild febrile disease with symptoms that include fever, myalgia, arthralgia, persistent headaches and asthenia. Virulent strains of SFV in mice cause lethal encephalitis by infecting neurons in the central nervous system. In on-going experiments in the research group using a focused siRNA screen we have investigated the role of deubiquitylases (DUBs) during SFV infection (as a model alphavirus) and monitored the effect of DUB depletion on cell viability after infection. We identified a group of DUBs that have a pro-viral effect. The DUB, USP5, from this screen was validated to determine its effect upon viral replication. Here, we show that depleted USP5 in HeLa cells resulted in SFV RNA and viral yield at 8 h post-infection being significantly reduced. In the multi-step viral growth curve assay, in the absence of USP5, similar yields of SFV were determined at 2 and 4 h post-infection. However, a significant reduction in the infectious viral particles release at 6, 8, 10 and 12 h post-infection was observed and this could be reversed by direct constraining viral replication. These results raise the potential for USP5 to play a distinct role in the replication of SFV, suggesting that USP5 may be a possible anti-viral therapy for alphavirus infection.
There are many events that took place in Al Mosul province between 2013 and 2018. These events led to many changes in the area under study. These changes involved a decrease in agricultural crops and water due to the population leaving the area. Therefore, it is imperative that planners, decision-makers, and development officials intervene in order to restore the region's activity in terms of environment and agriculture. The aim of this research is to use remote sensing (RS) technique and geographic information system (GIS) to detect the change that occurred in the mentioned period. This was achieved through the use of the ArcGIS software package for the purpose of assessing the state of lands of agricultural crops and
... Show MoreThyme essential oil (TEO) was extracted from dried leaves of Thymus vulgaris. The air-dried aerial parts of the plant produced 1.0% yield of TEO. The detection of this essential oil’s compounds was performed by GC-MASS. The cytotoxic activity of TEO was evaluated against two human cancer cell lines, namely HeLa (human epithelial cervical cancer) and MCF-7 (human breast carcinoma). Cells grown in 96 multi-well plates were treated with six concentrations of EO (6.25, 12.5, 25, 50, 100, 200 ppm) and incubated at 37 °C for 72 hrs. Cancer cell lines elicited various degrees of sensitivity to the cytotoxic effect of essential oil. The TEO exhibited significant differences (p≤ 0.01) between the effects of
... Show MoreQuantitative real-time Polymerase Chain Reaction (RT-qPCR) has become a valuable molecular technique in biomedical research. The selection of suitable endogenous reference genes is necessary for normalization of target gene expression in RT-qPCR experiments. The aim of this study was to determine the suitability of each 18S rRNA and ACTB as internal control genes for normalization of RT-qPCR data in some human cell lines transfected with small interfering RNA (siRNA). Four cancer cell lines including MCF-7, T47D, MDA-MB-231 and Hela cells along with HEK293 representing an embryonic cell line were depleted of E2F6 using siRNA specific for E2F6 compared to negative control cells, which were transfected with siRNA not specific for any gene. Us
... Show MoreNowadays, the mobile communication networks have become a consistent part of our everyday life by transforming huge amount of data through communicating devices, that leads to new challenges. According to the Cisco Networking Index, more than 29.3 billion networked devices will be connected to the network during the year 2023. It is obvious that the existing infrastructures in current networks will not be able to support all the generated data due to the bandwidth limits, processing and transmission overhead. To cope with these issues, future mobile communication networks must achieve high requirements to reduce the amount of transferred data, decrease latency and computation costs. One of the essential challenging tasks in this subject
... Show MoreCloud Computing is a mass platform to serve high volume data from multi-devices and numerous technologies. Cloud tenants have a high demand to access their data faster without any disruptions. Therefore, cloud providers are struggling to ensure every individual data is secured and always accessible. Hence, an appropriate replication strategy capable of selecting essential data is required in cloud replication environments as the solution. This paper proposed a Crucial File Selection Strategy (CFSS) to address poor response time in a cloud replication environment. A cloud simulator called CloudSim is used to conduct the necessary experiments, and results are presented to evidence the enhancement on replication performance. The obtained an
... Show MoreThis work aims to analyse the dynamic behaviours of the forest pest system. We confirm the forest pest system in plane for limit cycles bifurcating existence from a Hopf bifurcation under certain conditions by using the first Lyapunov coefficient and the second-order of averaging theory. It is shown that all stationary points in this system have Hopf bifurcation points and provide an estimation of the bifurcating limit cycles.
Heart disease identification is one of the most challenging task that requires highly experienced cardiologists. However, in developing nations such as Ethiopia, there are a few cardiologists and heart disease detection is more challenging. As an alternative solution to cardiologist, this study proposed a more effective model for heart disease detection by employing random forest and sequential feature selection (SFS). SFS is an effective approach to improve the performance of random forest model on heart disease detection. SFS removes unrelated features in heart disease dataset that tends to mislead random forest model on heart disease detection. Thus, removing inappropriate and duplicate features from the training set with sequential f
... Show MoreMost recognition system of human facial emotions are assessed solely on accuracy, even if other performance criteria are also thought to be important in the evaluation process such as sensitivity, precision, F-measure, and G-mean. Moreover, the most common problem that must be resolved in face emotion recognition systems is the feature extraction methods, which is comparable to traditional manual feature extraction methods. This traditional method is not able to extract features efficiently. In other words, there are redundant amount of features which are considered not significant, which affect the classification performance. In this work, a new system to recognize human facial emotions from images is proposed. The HOG (Histograms of Or
... Show MoreBackground:
Cyberbullying is one of the major electronic problems, and it is not a new phenomenon. It was present in the traditional form before the emergence of social networks, and cyberbullying has many consequences, including emotional and physiological states such as depression and anxiety. Given the prevalence of this phenomenon and the importance of the topic in society and its negative impact on all age groups, especially adolescents, this work aims to build a model that detects cyberbullying in the comments on social media (Twitter) written in the Arabic language using Extreme Gradient Boosting (XGBoost) and Random Forest methods in building the models. After a series of pre-processing, we found that the accuracy of classification of t
... Show More