Preferred Language
Articles
/
KxaaBYcBVTCNdQwCBy8Z
Developing an Arabic handwritten recognition system by means of artificial neural network
...Show More Authors

The matter of handwritten text recognition is as yet a major challenge to mainstream researchers. A few ways deal with this challenge have been endeavored in the most recent years, for the most part concentrating on the English pre-printed or handwritten characters space. Consequently, the need to effort a research concerning to Arabic texts handwritten recognition. The Arabic handwriting presents unique technical difficulties because it is cursive, right to left in writing and the letters convert its shapes and structures when it is putted at initial, middle, isolation or at the end of words. In this study, the Arabic text recognition is developed and designed to recognize image of Arabic text/characters. The proposed model gets a single line of Arabic text, which convert and segments into words and then segments into letters. A multilayer feed forward neural network is trained to recognize these segments as characters. The final results indicate and clarify that the proposed system perform an effective accuracy of recognition rated up to 83% for Arabic text.

Publication Date
Sat Jan 01 2022
Journal Name
Ssrn Electronic Journal
The Prospective of Artificial Neural Network (ANN’s) Model Application to Ameliorate Management of Post Disaster Engineering Projects
...Show More Authors

Currently and under the COVID-19 which is considered as a kind of disaster or even any other natural or manmade disasters, this study was confirmed to be important especially when the society is proceeding to recover and reduce the risks of as possible as injuries. These disasters are leading somehow to paralyze the activities of society as what happened in the period of COVID-19, therefore, more efforts were to be focused for the management of disasters in different ways to reduce their risks such as working from distance or planning solutions digitally and send them to the source of control and hence how most countries overcame this stage of disaster (COVID-19) and collapse. Artificial intelligence should be used when there is no practica

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Journal Of Engineering
Convolutional Multi-Spike Neural Network as Intelligent System Prediction for Control Systems
...Show More Authors

The evolution in the field of Artificial Intelligent (AI) with its training algorithms make AI very important in different aspect of the life. The prediction problem of behavior of dynamical control system is one of the most important issue that the AI can be employed to solve it. In this paper, a Convolutional Multi-Spike Neural Network (CMSNN) is proposed as smart system to predict the response of nonlinear dynamical systems. The proposed structure mixed the advantages of Convolutional Neural Network (CNN) with Multi -Spike Neural Network (MSNN) to generate the smart structure. The CMSNN has the capability of training weights based on a proposed training algorithm. The simulation results demonstrated that the proposed

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Jul 01 2022
Journal Name
Iop Conference Series: Earth And Environmental Science
Computer Model Application for Sorting and Grading Citrus Aurantium Using Image Processing and Artificial Neural Network
...Show More Authors
Abstract<p>This study was conducted in College of Science \ Computer Science Department \ University of Baghdad to compare between automatic sorting and manual sorting, which is more efficient and accurate, as well as the use of artificial intelligence in automated sorting, which included artificial neural network, image processing, study of external characteristics, defects and impurities and physical characteristics; grading and sorting speed, and fruits weigh. the results shown value of impurities and defects. the highest value of the regression is 0.40 and the error-approximation algorithm has recorded the value 06-1 and weight fruits fruit recorded the highest value and was 138.20 g, Gradin</p> ... Show More
View Publication
Scopus (2)
Scopus Crossref
Publication Date
Tue Jun 30 2020
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Using Artificial Neural Network to Predict Rate of Penetration from Dynamic Elastic Properties in Nasiriya Oil Field
...Show More Authors

   The time spent in drilling ahead is usually a significant portion of total well cost. Drilling is an expensive operation including the cost of equipment and material used during the penetration of rock plus crew efforts in order to finish the well without serious problems. Knowing the rate of penetration should help in speculation of the cost and lead to optimize drilling outgoings. Ten wells in the Nasiriya oil field have been selected based on the availability of the data. Dynamic elastic properties of Mishrif formation in the selected wells were determined by using Interactive Petrophysics (IP V3.5) software based on the las files and log record provided. The average rate of penetration and average dynamic elastic propert

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Indian Journal Of Ecology
Classification of al-hammar marshes satellite images in Iraq using artificial neural network based on coding representation
...Show More Authors

Scopus (2)
Scopus
Publication Date
Mon Jan 01 2024
Journal Name
Baghdad Science Journal
Classification of Arabic Alphabets Using a Combination of a Convolutional Neural Network and the Morphological Gradient Method
...Show More Authors

The field of Optical Character Recognition (OCR) is the process of converting an image of text into a machine-readable text format. The classification of Arabic manuscripts in general is part of this field. In recent years, the processing of Arabian image databases by deep learning architectures has experienced a remarkable development. However, this remains insufficient to satisfy the enormous wealth of Arabic manuscripts. In this research, a deep learning architecture is used to address the issue of classifying Arabic letters written by hand. The method based on a convolutional neural network (CNN) architecture as a self-extractor and classifier. Considering the nature of the dataset images (binary images), the contours of the alphabet

... Show More
View Publication Preview PDF
Crossref (1)
Scopus Crossref
Publication Date
Sat Jan 01 2011
Journal Name
Journal Of College Of Education
Recognition the Arabic Characters Based on the Characteristics of Arabic Language
...Show More Authors

Publication Date
Mon Jun 17 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A Study of Positive and Negative Parity States in 114Te nucleus by the Interacting Boson Model .IBM by Neural Network(Back propagation multi-layer neural network) .
...Show More Authors

Positive and negative parity states for 114Te have been studied applying the vibration al limit U(5) of Interacting boson model (IBM- 1 ) . The present results have shown their good agreement with experimental data in addition to the determination of the spin/parity of new energy levels are not assigned experimentally as the levels 0+2 and 5+1 and the levels 3"1 and 5-1 . Then back propagation multiLayer neural network used for positive and negative parity states for 114Te and shown their membership to the Vibration limit U(5) the network implemented by MATLAB system.

View Publication Preview PDF
Publication Date
Thu May 05 2022
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Classification SINGLE-LEAD ECG by using conventional neural network algorithm
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Tue Dec 12 2017
Journal Name
Al-khwarizmi Engineering Journal
Model Reference Adaptive Control based on a Self-Recurrent Wavelet Neural Network Utilizing Micro Artificial Immune Systems
...Show More Authors

Abstract 

This paper presents an intelligent model reference adaptive control (MRAC) utilizing a self-recurrent wavelet neural network (SRWNN) to control nonlinear systems. The proposed SRWNN is an improved version of a previously reported wavelet neural network (WNN). In particular, this improvement was achieved by adopting two modifications to the original WNN structure. These modifications include, firstly, the utilization of a specific initialization phase to improve the convergence to the optimal weight values, and secondly, the inclusion of self-feedback weights to the wavelons of the wavelet layer. Furthermore, an on-line training procedure was proposed to enhance the control per

... Show More
View Publication Preview PDF
Crossref (1)
Crossref