A simulation study of using 2D tomography to reconstruction a 3D object is presented. The 2D Radon transform is used to create a 2D projection for each slice of the 3D object at different heights. The 2D back-projection and the Fourier slice theorem methods are used to reconstruction each 2D projection slice of the 3D object. The results showed the ability of the Fourier slice theorem method to reconstruct the general shape of the body with its internal structure, unlike the 2D Radon method, which was able to reconstruct the general shape of the body only because of the blurring artefact, Beside that the Fourier slice theorem could not remove all blurring artefact, therefore, this research, suggested the threshold technique to eliminate the excessive points due to the blurring artefact.
NAA Mustafa, University of Sulaimani, Ms. c Thesis, 2010 - Cited by 4
تحلل الورقة الحالية تمثيل كاريل تشرشل للصورة النمطية للمرأة في Top Girls (1982). تُظهر المسرحية كيف وصلت النساء في نضالهن لمحاربة اضطهاد الرجال عبر التاريخ ، إلى مستوى من القوة والحرية يستخدمان للسيطرة على جنسهن دون شفقة. مارلين ، الشخصية المركزية في هذه المسرحية ، هي امرأة تبنت الصفات الذكورية إلى أقصى الحدود. لتسلق سلم النجاح إلى قمته ، تضحي مارلين بطفلها وعائلتها وحبها. كما تعرض المسرحية النساء الصامتات والم
... Show MoreWith the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor se
... Show MoreText based-image clustering (TBIC) is an insufficient approach for clustering related web images. It is a challenging task to abstract the visual features of images with the support of textual information in a database. In content-based image clustering (CBIC), image data are clustered on the foundation of specific features like texture, colors, boundaries, shapes. In this paper, an effective CBIC) technique is presented, which uses texture and statistical features of the images. The statistical features or moments of colors (mean, skewness, standard deviation, kurtosis, and variance) are extracted from the images. These features are collected in a one dimension array, and then genetic algorithm (GA) is applied for image clustering.
... Show MoreOne of the most difficult issues in the history of communication technology is the transmission of secure images. On the internet, photos are used and shared by millions of individuals for both private and business reasons. Utilizing encryption methods to change the original image into an unintelligible or scrambled version is one way to achieve safe image transfer over the network. Cryptographic approaches based on chaotic logistic theory provide several new and promising options for developing secure Image encryption methods. The main aim of this paper is to build a secure system for encrypting gray and color images. The proposed system consists of two stages, the first stage is the encryption process, in which the keys are genera
... Show MoreAn oil spill is a leakage of pipelines, vessels, oil rigs, or tankers that leads to the release of petroleum products into the marine environment or on land that happened naturally or due to human action, which resulted in severe damages and financial loss. Satellite imagery is one of the powerful tools currently utilized for capturing and getting vital information from the Earth's surface. But the complexity and the vast amount of data make it challenging and time-consuming for humans to process. However, with the advancement of deep learning techniques, the processes are now computerized for finding vital information using real-time satellite images. This paper applied three deep-learning algorithms for satellite image classification
... Show MoreThe steganography (text in image hiding) methods still considered important issues to the researchers at the present time. The steganography methods were varied in its hiding styles from a simple to complex techniques that are resistant to potential attacks. In current research the attack on the host's secret text problem didn’t considered, but an improved text hiding within the image have highly confidential was proposed and implemented companied with a strong password method, so as to ensure no change will be made in the pixel values of the host image after text hiding. The phrase “highly confidential” denoted to the low suspicious it has been performed may be found in the covered image. The Experimental results show that the covere
... Show MoreBetween the duality of sound and image, the completeness of the actor’s personality at the director comes to announce the birth of the appropriate theatrical role for that character as the basic and inherent element of the artwork, within his working system in the pattern of vocal behavior as well as motor/signal behavior as he searches for aesthetic and skill proficiency at the same time.
This is done through the viewer’s relationship with the theatrical event, which the director considers as an area of active creative activity in relation to (the work of the actor) through vocal recitation and the signs it broadcasts in order to fulfill the requirements of the dramatic situation and what it requires of a visual vision drawn in t
Semantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the s
... Show MoreThe traditional city suffers from the decline of the urban image due to urban development and homogeneity with the urban context of the city, and because of the lack of determinants governing the urban image, it is that the center of the city of traditional Kadhimiya suffers from a break in the urban image, Therefore, the research included how to build a distinctive urban image of the center of the traditional city of Kadhimiya and achieve the visual pleasure and comfort of the recipient and the urban image here means is an image not picture which are related to several aspects, including physical, social and psychological as well as the collective memory of individuals and their rela