Water quality assessment offers a scientific basis for water resource development and management. This research aims to assessment of Al-Rustamiya sewage treatment plant depending on annually changes and produces maps that declare changes on parameter during a period (2015-2018). Based on prior Government Department Baghdad Environment data which annually feature changes for samples from Northern Rustamiya have been estimated as a working model. Drawn a map of the Diyala River shows annual changes in the characteristics of the Diyala River, based on northern and southern Rustamiya effluent samples, and Diyala River samples. The characteristics that research focused on were biochemical oxygen demand (BOD), total suspension solids (TSS), chloride, cl, hydrogen ion concentration, pH, sulfate, SO4 -2, nitrate, NO3 - and phosphate, PO4 -3 during the period of (2015-2018). The results demonstrate that yearly variations in wastewater treatment characteristics occasionally violate Iraq's regulatory requirements. It was identified that the NO3 - inadequate Iraqi standard for four years of study and SO4 -2 were inadequate for the first three years of the study period, TSS for two years outside the specification and cl and pH were compatible with period study. The river maps were separated into three groups where NO3 - pollution from Northern Rustamiya with value 11.99 mg/L and TSS, Cl, SO4 -2 and PO4 -3 concentrated in centre of Northern and southern Rustamiya with values 96.99, 305,869.99, and 3.099 mg/L. The southern Northern Rustamiya area concentrates of BOD and pH with values 73.2 mg/L and 7.79. Effluents assessment of statically analysis and GIS for two Rustamiya stations provides a clear and integrated view of the output and impact on the Diyala river for Northern and Southern Rustamiya stations.
Inefficient wastewater disposal and wastewater discharge problems in water bodies have led to increasing pollution in water bodies. Pollutants in the river contribute to increasing the biological oxygen demand (BOD), total suspended solids (SS), total dissolved solids (TDS), chemical oxygen demand (COD), and toxic metals render this water unsuitable for consumption and even pose a significant risk to human health. Over the last few years, water conservation has been the subject of growing awareness and concern throughout the world, so this research focused on review studies of researches that studied the importance of water quality of wastewater treated disposal in water bodies and modern technology to management w
... Show MoreThe concerns about water contaminants affect most developing countries bypassing rivers over them. The issue is challenging to introduce water quality within the allowed limits for drinking, industrial and agricultural purposes. In the present study, physical-chemical parameters measurements of water samples taken from eleven stations were collected during six months in 2020 through flow path along the whole length of Tigris River inside AL Kut city (center of Wassit government) were investigated for six parameters are total hardness TH, hydrogen ion pH, biological oxygen demand BOD5, total dissolved solids TDS, nitrate NO3, and sulfate SO4. The water quality analysis results were compared with the maximum allowable limit concentrat
... Show MoreAl-Rustamiyah plant is the oldest and biggest sewage treatment plant in Iraq; it locates in the south of Baghdad city. The plant suffers from serious problems associated with overflow and low capacity. The present work aims to upgrade the heart of biological treatment process through suggesting the use of membrane bioreactor; (MBR). In this work, fouling of membrane during sewage treatment has been analyzed experimentally and theoretically by fouling mechanisms. Aeration has been applied in order to control fouling through producing effective diameters of air bubbles close to the membrane walls. Effect of air flow rate on flux decline was investigated. Hermia's models were used to investigate the fouling mechanisms. The results showed th
... Show MoreThe aim of this study is to evaluate the seasonal variations of Mosul dam lake by measuring the temperature, dissolved oxygen (DO) and biochemical oxygen demand (BOD) during the period from July 2018 to April 2019. Twenty two sites were selected within the studied lake. The obtained results were integrated with the geographical information system (GIS) using spatial images to create maps utilizing Arc map software. These maps were used to demonstrate the concentrations of the investigated parameters during the study period. The results show that all parameters were within the accepted levels, indicating the good status of the lake.
Sewer network is one of the important utilities in modern cities which discharge the sewage from all facilities. The increase of population numbers consequently leads to the increase in water consumption; hence waste water generation. Sewer networks work is very expensive and need to be designed accurately. Thus construction effective sewer network system with minimum cost is very necessary to handle waste water generation.
In this study trunk mains networks design was applied which connect the pump stations together by underground pipes for too long distances. They usually have large diameters with varying depths which consequently need excavations and gathering from pump stations and transport the sewage
... Show MoreThe groundwater represents the main source of water in the study area due to lack of surface water. The Dammam unconfined aquifer represents the main aquifer in the study area and Southern desert because of the regional extent, the quantity and quality of water. Many groundwater wells have been drilled in the study area to coverage the huge demand of water for agricultural purposes. The Geographic Information System (GIS) was used to estimate the volume of water which calculated (25.6964 × 109 m3) within the study area , automate calculation of the area of Al Salman basin using digital elevation models, derive the thickness maps of Al
Dammam unconfined aquifer from Key holes (KH) and Bore holes (
This study aims to evaluate drinking water quality at the Al Wahda plant (WTP) in Baghdad city. A conventional water treatment plant with an average flow rate of 72.82 MLD. Water samples were taken from the influent and effluent of the treatment plant and analyzed for some physicochemical and biological parameters during the period from June to November 2020. The results of the evaluation indicate that treated water has almost the same characteristics as raw water; in other terms, the plant units do not remove pollutants as efficiently as intended. Based on this, the station appears to be nothing more than a series of water passage units. However, apart from Total dissolved solids, the mean values of all parameters in the study were
... Show MoreThe objective of this study is to verify the overall performance and evaluate the wastewater quality of the wastewater treatment plant at the Abu Ghraib Dairy Factory and compare the results with the Iraqi Quality Standards (IQS) for effluent disposal and with the national determinants of treated water use. Agricultural irrigation wastewater, which included daily assessment records of the main parameters affecting wastewater [five-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), total dissolved solids (T.D.S), total suspended solids (TSS), phosphate (PO4), nitrate (NO3), hydrogen ion concentration (pH)] obtained from the quality control department of Abu Ghraib dairy plant registered from January 2017 to December 2020. Th
... Show MoreIn this study water quality index (WQI) was calculated to classify the flowing water in the Tigris River in Baghdad city. GIS was used to develop colored water quality maps indicating the classification of the river for drinking water purposes. Water quality parameters including: Turbidity, pH, Alkalinity, Total hardness, Calcium, Magnesium, Iron, Chloride, Sulfate, Nitrite, Nitrate, Ammonia, Orthophosphate and Total dissolved solids were used for WQI determination. These parameters were recorded at the intakes of the WTPs in Baghdad for the period 2004 to 2011. The results from the annual average WQI analysis classified the Tigris River very poor to polluted at the north of Baghdad (Alkarkh WTP) while it was very poor to very polluted in t
... Show More