Preferred Language
Articles
/
KxYrIIcBVTCNdQwCBTlx
Optimization of Digital Histopathology Image Quality
...Show More Authors

One of the biomedical image problems is the appearance of the bubbles in the slide that could occur when air passes through the slide during the preparation process. These bubbles may complicate the process of analysing the histopathological images. The objective of this study is to remove the bubble noise from the histopathology images, and then predict the tissues that underlie it using the fuzzy controller in cases of remote pathological diagnosis. Fuzzy logic uses the linguistic definition to recognize the relationship between the input and the activity, rather than using difficult numerical equation. Mainly there are five parts, starting with accepting the image, passing through removing the bubbles, and ending with predict the tissues. These were implemented by defining membership functions between colours range using MATLAB. Results: 50 histopathological images were tested on four types of membership functions (MF); the results show that (nine-triangular) MF get 75.4% correctly predicted pixels versus 69.1, 72.31 and 72% for (five- triangular), (five-Gaussian) and (nine-Gaussian) respectively. Conclusions: In line with the era of digitally driven e-pathology, this process is essentially recommended to ensure quality interpretation and analyses of the processed slides; thus overcoming relevant limitations.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Apr 10 2019
Journal Name
Engineering, Technology & Applied Science Research
Content Based Image Clustering Technique Using Statistical Features and Genetic Algorithm
...Show More Authors

Text based-image clustering (TBIC) is an insufficient approach for clustering related web images. It is a challenging task to abstract the visual features of images with the support of textual information in a database. In content-based image clustering (CBIC), image data are clustered on the foundation of specific features like texture, colors, boundaries, shapes. In this paper, an effective CBIC) technique is presented, which uses texture and statistical features of the images. The statistical features or moments of colors (mean, skewness, standard deviation, kurtosis, and variance) are extracted from the images. These features are collected in a one dimension array, and then genetic algorithm (GA) is applied for image clustering.

... Show More
View Publication
Scopus (5)
Crossref (2)
Scopus Crossref
Publication Date
Wed Dec 13 2023
Journal Name
2023 3rd International Conference On Intelligent Cybernetics Technology & Applications (icicyta)
GPT-4 versus Bard and Bing: LLMs for Fake Image Detection
...Show More Authors

The recent emergence of sophisticated Large Language Models (LLMs) such as GPT-4, Bard, and Bing has revolutionized the domain of scientific inquiry, particularly in the realm of large pre-trained vision-language models. This pivotal transformation is driving new frontiers in various fields, including image processing and digital media verification. In the heart of this evolution, our research focuses on the rapidly growing area of image authenticity verification, a field gaining immense relevance in the digital era. The study is specifically geared towards addressing the emerging challenge of distinguishing between authentic images and deep fakes – a task that has become critically important in a world increasingly reliant on digital med

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sat Oct 30 2021
Journal Name
Iraqi Journal Of Science
Small Binary Codebook Design for Image Compression Depending on Rotating Blocks
...Show More Authors

     The searching process using a binary codebook of combined Block Truncation Coding (BTC) method and Vector Quantization (VQ), i.e. a full codebook search for each input image vector to find the best matched code word in the codebook, requires a long time.   Therefore, in this paper, after designing a small binary codebook, we adopted a new method by rotating each binary code word in this codebook into 900 to 2700 step 900 directions. Then, we systematized each code word depending on its angle  to involve four types of binary code books (i.e. Pour when , Flat when  , Vertical when, or Zigzag). The proposed scheme was used for decreasing the time of the coding procedure, with very small distortion per block, by designing s

... Show More
Scopus (1)
Scopus Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Oil spill classification based on satellite image using deep learning techniques
...Show More Authors

 An oil spill is a leakage of pipelines, vessels, oil rigs, or tankers that leads to the release of petroleum products into the marine environment or on land that happened naturally or due to human action, which resulted in severe damages and financial loss. Satellite imagery is one of the powerful tools currently utilized for capturing and getting vital information from the Earth's surface. But the complexity and the vast amount of data make it challenging and time-consuming for humans to process. However, with the advancement of deep learning techniques, the processes are now computerized for finding vital information using real-time satellite images. This paper applied three deep-learning algorithms for satellite image classification

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Thu Mar 01 2007
Journal Name
Al-khwarizmi Engineering Journal
Image restoration using regularized inverse filtering and adaptive threshold wavelet denoising
...Show More Authors

Although the Wiener filtering is the optimal tradeoff of inverse filtering and noise smoothing, in the case when the blurring filter is singular, the Wiener filtering actually amplify the noise. This suggests that a denoising step is needed to remove the amplified noise .Wavelet-based denoising scheme provides a natural technique for this purpose .

                In this paper  a new image restoration scheme is proposed, the scheme contains two separate steps : Fourier-domain inverse filtering  and wavelet-domain image denoising. The first stage is Wiener filtering of the input image , the filtered image is inputted to adaptive threshold wavelet

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
Indoor/Outdoor Deep Learning Based Image Classification for Object Recognition Applications
...Show More Authors

With the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor se

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Sat Feb 02 2019
Journal Name
Journal Of The College Of Education For Women
Language Teaching & Leaning Problems at the Iraqi university level: Image & Reality
...Show More Authors

Language Teaching & Leaning Problems at the Iraqi university level: Image & Reality

View Publication Preview PDF
Publication Date
Sat Oct 30 2021
Journal Name
Iraqi Journal Of Science
Small Binary Codebook Design for Image Compression Depending on Rotating Blocks
...Show More Authors

     The searching process using a binary codebook of combined Block Truncation Coding (BTC) method and Vector Quantization (VQ), i.e. a full codebook search for each input image vector to find the best matched code word in the codebook, requires a long time.   Therefore, in this paper, after designing a small binary codebook, we adopted a new method by rotating each binary code word in this codebook into 900 to 2700 step 900 directions. Then, we systematized each code word depending on its angle  to involve four types of binary code books (i.e. Pour when , Flat when  , Vertical when, or Zigzag). The proposed scheme was used for decreasing the time of the coding pro

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Int. J. Nonlinear Anal. Appl
Adaptive 1-D polynomial coding to compress color image with C421
...Show More Authors

Publication Date
Thu Sep 30 2021
Journal Name
Iraqi Journal Of Science
Chaos-based Color Image Steganography Method Using 3 D Cat Map
...Show More Authors

     Steganography is a technique to hide a secret message within a different multimedia carrier so that the secret message cannot be identified. The goals of steganography techniques include improvements in imperceptibility, information hiding, capacity, security, and robustness. In spite of numerous secure methodologies that have been introduced, there are ongoing attempts to develop these techniques to make them more secure and robust. This paper introduces a color image steganographic method based on a secret map, namely 3-D cat. The proposed method aims to embed data using a secure structure of chaotic steganography, ensuring better security. Rather than using the complete image for data hiding, the selection of

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (2)
Scopus Crossref