Polyaniline nanofibers (PAni-NFs) have been synthesized under various concentrations (0.12, 0.16, and 0.2 g/l) of aniline and different times (2h and 3 h) by hydrothermal method at 90°C. Was conducted with the use of X-ray diffraction (XRD), Fourier Transform Infrared spectra (FTIR), Ultraviolet-Visible (UV-VIS) absorption spectra, Thermogravimetric Analysis (TGA), and Field Emission-Scanning Electron Microscopy (FE-SEM). The X-ray diffraction patterns revealed the amorphous nature of all the produced samples. FE-SEM demonstrated that Polyaniline has a nanofiber-like structure. The observed typical peaks of PAni were (1580, 1300-1240, and 821 cm-1 ), analyzed by the chemical bonding of the formed PAni through FTIR spectroscopy. Also, tests indicated the promotion of the thermal stability of polyaniline nano-composite at temperatures above 600°C. Still, the PAni-0.12 g/l sample was better than the other samples, and the optical parameters manifested a decrease in the band gap (Eg) bandgap. The observed TGA test findings also promoted Polyaniline's thermal stability at temperatures reaching 600°C.
Wireless Body Area Sensor Networks (WBASNs) have garnered significant attention due to the implementation of self-automaton and modern technologies. Within the healthcare WBASN, certain sensed data hold greater significance than others in light of their critical aspect. Such vital data must be given within a specified time frame. Data loss and delay could not be tolerated in such types of systems. Intelligent algorithms are distinguished by their superior ability to interact with various data systems. Machine learning methods can analyze the gathered data and uncover previously unknown patterns and information. These approaches can also diagnose and notify critical conditions in patients under monitoring. This study implements two s
... Show MoreDisease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature
... Show MoreCancer is one of the critical health concerns. Health authorities around the world have devoted great attention to cancer and cancer causing factors to achieve control against the increasing rate of cancer. Carcinogens are the most salient factors that are accused of causing a considerable rate of cancer cases. Scientists, in different fields of knowledge, keep warning people of the imminent attack of carcinogens which are surrounding people in the environment and may launch their attack at any moment. The present paper aims to investigate the linguistic construction of the imminent carcinogen attack in English and Arabic scientific discourse. Such an investigation contributes to enhancing the scientists’ awareness of the linguistic co
... Show MoreIn this paper, a single link flexible joint robot is used to evaluate a tracking trajectory control and vibration reduction by a super-twisting integral sliding mode (ST-ISMC). Normally, the system with joint flexibility has inevitably some uncertainties and external disturbances. In conventional sliding mode control, the robustness property is not guaranteed during the reaching phase. This disadvantage is addressed by applying ISMC that eliminates a reaching phase to ensure the robustness from the beginning of a process. To design this controller, the linear quadratic regulator (LQR) controller is first designed as the nominal control to decide a desired performance for both tracking and vibration responses. Subsequently, discontinuous con
... Show MoreThe exponential growth of audio data shared over the internet and communication channels has raised significant concerns about the security and privacy of transmitted information. Due to high processing requirements, traditional encryption algorithms demand considerable computational effort for real-time audio encryption. To address these challenges, this paper presents a permutation for secure audio encryption using a combination of Tent and 1D logistic maps. The audio data is first shuffled using Tent map for the random permutation. The high random secret key with a length equal to the size of the audio data is then generated using a 1D logistic map. Finally, the Exclusive OR (XOR) operation is applied between the generated key and the sh
... Show MoreThe main intention of this study was to investigate the development of a new optimization technique based on the differential evolution (DE) algorithm, for the purpose of linear frequency modulation radar signal de-noising. As the standard DE algorithm is a fixed length optimizer, it is not suitable for solving signal de-noising problems that call for variability. A modified crossover scheme called rand-length crossover was designed to fit the proposed variable-length DE, and the new DE algorithm is referred to as the random variable-length crossover differential evolution (rvlx-DE) algorithm. The measurement results demonstrate a highly efficient capability for target detection in terms of frequency response and peak forming that was isola
... Show More
2(2-Tetrahydropyranylthio) methyl cyclopropyl amines were synthesized from allylmercaptan through several steps. The structures of the intermediates and the final products where confirmed through IR, NMR and elemental analysis, these compounds may be of value in the treatment of diseases where free radicals are implicated in their pathogensis, since the thio and the amino groups of the synthesized compounds may act as free radical scavengers.