AA3003-H14 aluminum alloy plates were welded by friction stir welding and TIG welding.
Fatigue properties of the welded joints were evaluated based on the superior tensile properties for
FSW at 1500 rpm rotational speed and 80 mm/min welding speed. However, there is not much
information available on effect of welding parameters with evolution of fatigue life of friction stir
welds. The present study experimentally analyzed fatigue properties for base, FSW, and TIG welds
of AA 3003-H14 aluminum alloy. Fatigue properties of FSW joints were slightly lower than the
base metal and higher than TIG welding.
Image registration plays a significant role in the medical image processing field. This paper proposes a development on the accuracy and performance of the Speeded-Up Robust Surf (SURF) algorithm to create Extended Field of View (EFoV) Ultrasound (US) images through applying different matching measures. These measures include Euclidean distance, cityblock distance, variation, and correlation in the matching stage that was built in the SURF algorithm. The US image registration (fusion) was implemented depending on the control points obtained from the used matching measures. The matched points with higher frequency algorithm were proposed in this work to perform and enhance the EFoV for the US images, since the maximum accurate matching po
... Show MoreBlades of gas turbine are usually suffered from high thermal cyclic load which leads to crack initiated and then crack growth and finally failure. The high thermal cyclic load is usually coming from high temperature, high pressure, start-up, shut-down and load change. An experimental and numerical analysis was carried out on the real blade and model of blade to simulate the real condition in gas turbine. The pressure, temperature distribution, stress intensity factor and the thermal stress in model of blade have been investigated numerically using ANSYS V.17 software. The experimental works were carried out using a particular designed and manufactured rig to simulate the real condition that blade suffers from. A new cont
... Show MoreThe sending of information at the present time requires the speed and providing protection for it. So compression of the data is used in order to provide speed and encryption is used in order to provide protection. In this paper a proposed method is presented in order to provide compression and security for the secret information before sending it. The proposed method based on especial keys with MTF transform method to provide compression and based on RNA coding with MTF encoding method to provide security. The proposed method based on multi secret keys. Every key is designed in an especial way. The main reason in designing these keys in special way is to protect these keys from the predication of the unauthorized users.
Recommender Systems are tools to understand the huge amount of data available in the internet world. Collaborative filtering (CF) is one of the most knowledge discovery methods used positively in recommendation system. Memory collaborative filtering emphasizes on using facts about present users to predict new things for the target user. Similarity measures are the core operations in collaborative filtering and the prediction accuracy is mostly dependent on similarity calculations. In this study, a combination of weighted parameters and traditional similarity measures are conducted to calculate relationship among users over Movie Lens data set rating matrix. The advantages and disadvantages of each measure are spotted. From the study, a n
... Show MoreThis work aims to see the positive association rules and negative association rules in the Apriori algorithm by using cosine correlation analysis. The default and the modified Association Rule Mining algorithm are implemented against the mushroom database to find out the difference of the results. The experimental results showed that the modified Association Rule Mining algorithm could generate negative association rules. The addition of cosine correlation analysis returns a smaller amount of association rules than the amounts of the default Association Rule Mining algorithm. From the top ten association rules, it can be seen that there are different rules between the default and the modified Apriori algorithm. The difference of the obta
... Show MoreThe background subtraction is a leading technique adopted for detecting the moving objects in video surveillance systems. Various background subtraction models have been applied to tackle different challenges in many surveillance environments. In this paper, we propose a model of pixel-based color-histogram and Fuzzy C-means (FCM) to obtain the background model using cosine similarity (CS) to measure the closeness between the current pixel and the background model and eventually determine the background and foreground pixel according to a tuned threshold. The performance of this model is benchmarked on CDnet2014 dynamic scenes dataset using statistical metrics. The results show a better performance against the state-of the art
... Show MoreCryptography is a method used to mask text based on any encryption method, and the authorized user only can decrypt and read this message. An intruder tried to attack in many manners to access the communication channel, like impersonating, non-repudiation, denial of services, modification of data, threatening confidentiality and breaking availability of services. The high electronic communications between people need to ensure that transactions remain confidential. Cryptography methods give the best solution to this problem. This paper proposed a new cryptography method based on Arabic words; this method is done based on two steps. Where the first step is binary encoding generation used t
... Show MoreThe huge amount of documents in the internet led to the rapid need of text classification (TC). TC is used to organize these text documents. In this research paper, a new model is based on Extreme Machine learning (EML) is used. The proposed model consists of many phases including: preprocessing, feature extraction, Multiple Linear Regression (MLR) and ELM. The basic idea of the proposed model is built upon the calculation of feature weights by using MLR. These feature weights with the extracted features introduced as an input to the ELM that produced weighted Extreme Learning Machine (WELM). The results showed a great competence of the proposed WELM compared to the ELM.