Objective: Hesperidin (HSP) is a pharmacologically active organic compound found in citrus fruits and peppermint. We synthesized a new HSP derivative by reacting it with 5-Amino-1,3,4-thiadiazole-2-thiol in acetic acid. Methods: This compound was characterized by Fourier-transform infrared, proton nuclear magnetic resonance, and electron impact mass spectra. A molecular docking study explores the predicted binding of the compound and its possible mode of action. Bioavailability, site of absorption, drug mimic, and topological polar surface was predicted using absorption, distribution, metabolism, and excretion (ADME) studies. Results: The docking study predicts that the new compound binds to the active sites of Aurora-B and the MST3 pocket and has good ADME properties. Moreover, the thiazole ring and the presence of the electron releasing groups and hydrogen bond interaction with amino acid residues within the active sites play an important role in enhancing the antioxidant activity. Conclusion: In the present study, a new HSP derivative has been synthesized and characterized successfully and a theoretically promising antioxidant and anticytotoxic active agent introduced. We have shown the detailed binding analysis of 1,3,4-thiadiazol and hydrogen bonds with the inhibitor binding cavity of Aurora B and MST3. This could provide the development of some effective compounds against different diseases.
In this reserch Some new substituted and unsubstituted poly imides compounds. were synthesized by reaction of acrylol chloride with different amides (aliphatic and aromatic) in a suitable solvent in the presence amount triethyl amine (Et3N) with heating. The Structure confirmation of all polymers were confirmed using FT-IR,1H-NMR,13C-NMR and UV spectroscopy. Thermal analysis (TG) for some polymers showed their thermal stabilities. Other physical properties including softening points, melting point and solubility of the polymers were also measured
Oxazine and quinazoline has a very important in organic chemistry especially in hetero cyclic fields. this research consist the preparation of 4H,4'H-2,2'-bibenzo[d][1,3]oxazine-4,4'-dione compound (1) from di acid chloride with 2-aminobenzoic acid in pyridine as solvent to give compound (2) 3,3'-diamino-2,2'- biquinazoline-4,4'(3H,3'H)-dione .compound 2 include free amino group .this compound was reacted with maleic and phthalic anhydride for synthesized of cyclic imide compounds (3,4).another reaction for compound 2 with some substituted aromatic aldehyde for prepared of some novel Schiff bases (5-9) contains quinazoline ring. compound 1 was treated with sulfathiazole and sulfadiazine for synthesized of sulfa compounds contains sulf
... Show MoreIn this present work, [4,4`-(biphenyl-4,4`-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-1-ylidene)bis(2-methoxyphenl)(A1),4,4`-(biphenyl-4,4`-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-1-ylidene)diphenol(A2),1,1`-(biphenyl-4,4`-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-1-ylidene) dinaphthalen-2-ol (A3)]C.S was prepared in 3.5% NaCl. Corrosion prevention at (293-323) K has been studied by using electrochemical measurements. It shows that the utilized inhibitors are of mixed type based on the polarization curves. The results indicated that the inhibition efficiency changes were used with a change according to the functional groups on the benzene ring and through the electrochemical technique. Temperature increases with corrosion current
... Show MoreIn this study, chalcones were synthesis by condensing 2-acetylpyridine with aromatic aldehyde derivatives in dilute ethanolic potassium hydroxide solution at room temperature according to Claisen-Schmidt condensation. After that, new heterocyclic derivatives such as Oxazine, Thiazine and Pyrazol were synthesis by reaction between chalcones with urea, thiourea and hydrazine hydrate respectively scheme 1. All these compounds wrer characterization by FTIR, 1H-NMR spectroscopy and elemental analysis.
Several new derivatives of 1, 2, 4-triazoles linked to phthalimide moiety were synthesized through following multisteps. The first step involved preparation of 2, 2-diphthalimidyl ethanoic acid [2] via reaction of two moles of phthalimide with dichloroacetic acid. Treatment of the resulted imide with ethanol in the second step afforded 2, 2-diphthalimidyl ester [3] which inturn was introduced in reaction with hydrazine hydrate in the third step, producing the corresponding hydrazide derivative [4]. The synthesized hydazide was introduced in different synthetic paths including treatment with carbon disulfide in alkaline solution then with hydrazine hydrate to afford the new 1, 2, 4-triazole [10]. Reaction of compound [10] with different alde
... Show MoreReducing of ethyl 4-((2-hydroxy-3-methoxybenzylidene)amino)benzoate (1) afford ethyl 4-((2-hydroxy-3-methoxybenzyl)amino)benzoate (2). Reaction of this compound with Vilsmeier reagent affords novel 2-chloro-[1,3] benzoxazine ring (3). The corresponding acid hydrazide of compound 3 was synthesized from reaction of compound (3) with hydrazine hydrate. Newly series of hydrazones (5a–i) were synthesized from reaction of acid hydrazide with various aryl aldehydes. Antibacterial activity of the hydrazones was secerned utilizing gram-negative and gram-positive bacteria. Compound (5b) and (5c) exhibited significant antibacterial ability against both gram-negative and gram-positive bacteria, while the compounds (5a) showed mild antibacteri
... Show MoreReducing of ethyl 4-((2-hydroxy-3-methoxybenzylidene)amino)benzoate (1) afford ethyl 4-((2-hydroxy-3-methoxybenzyl) amino)benzoate (2). Reaction of this compound with Vilsmeier reagent affords novel 2-chloro-[1,3] benzoxazine ring (3). The corresponding acid hydrazide of compound 3 was synthesized from reaction of compound (3) with hydrazine hydrate. Newly series of hydrazones(5a–i) were synthesized from reaction of acid hydrazide with various aryl aldehydes. Antibacterial activity of the hydrazones wassecerned utilizing gram-negative and gram-positive bacteria. Compound (5b) and (5c) exhibited significant antibacterial ability against both gram-negative and gram-positive bacteria, while the compounds(5a) showed mild antibacterial activit
... Show More