Optical Mark Recognition (OMR) is the technology of electronically extracting intended data from marked fields, such as squareand bubbles fields, on printed forms. OMR technology is particularly useful for applications in which large numbers of hand-filled forms need to be processed quickly and with a great degree of accuracy. The technique is particularly popular with schools and universities for the reading in of multiple choice exam papers. This paper proposed OMRbased on Modify Multi-Connect Architecture (MMCA) associative memory, its work in two phases: training phase and recognition phase. The proposed method was also able to detect more than one or no selected choice. Among 800 test samples with 8 types of grid answer sheets and total 58000 questions, the system exhibits an accuracy is 99.96% in the recognition of marked, thus making it suitable for real world applications.
The digital revolution had greatly affected the methods through which we communicate, starting from the basic concepts of the internet technology and the web content in addition to the important issues that concern the culture of the digital media, the internet governance and the variation in the digital age in general and the graphic and internal design in particular.
This research addresses an important topic that goes along with the scientific development in the field of the digital design, especially in the internal and graphic designs. This study consists of two sections: the first includes the problem of the study and the need for it. Starting from the problem of the research, there is no clear perception of the formal characte
Background: L. sativum, are traditionally used for the treatment of various diseases and thought to have medicinal value. Isolates from many part of the world is now multidrug resistant. Therefore, there is an urgent need to look for and test an alternative herbal drug.
Objective: The present study aimed to evaluate the antibacterial activity of L. Sativum seed extract against multi drug resistant (MDR) and sensitive Pseudomonas aeruginosa clinical isolates.
Subjects and Methods: An ethanolic and aqueous stock extracts were prepared from L. sativum seed plant then serial dilutions were prepared and the obtained concentrations (50, 25, 12.5 and 6.2 mg/ml) were tested against 30 multidrug-resistan
... Show MoreZ-scan has been utilized for studying the non-linear properties and optical limiting behaviors of the dye Copper Phthalocyanine thin films. The refractive index is negative, which indicates a self-defocusing behavior and non-linear absorption coefficient (
Pure and Fe-doped zinc oxide nanocrystalline films were prepared
via a sol–gel method using -
C for 2 h.
The thin films were prepared and characterized by X-ray diffraction
(XRD), atomic force microscopy (AFM), field emission scanning
electron microscopy (FE-SEM) and UV- visible spectroscopy. The
XRD results showed that ZnO has hexagonal wurtzite structure and
the Fe ions were well incorporated into the ZnO structure. As the Fe
level increased from 2 wt% to 8 wt%, the crystallite size reduced in
comparison with the pure ZnO. The transmittance spectra were then
recorded at wavelengths ranging from 300 nm to 1000 nm. The
optical band gap energy of spin-coated films also decreased as Fe
doping concentra
The goal of this investigation is to prepare zinc oxide (ZnO) nano-thin films by pulsed laser deposition (PLD) technique through Q-switching double frequency Nd:YAG laser (532 nm) wavelength, pulse frequency 6 Hz, and 300 mJ energy under vacuum conditions (10-3 torr) at room temperature. (ZnO) nano-thin films were deposited on glass substrates with different thickness of 300, 600 and 900 nm. ZnO films, were then annealed in air at a temperature of 500 °C for one hour. The results were compared with the researchers' previous theoretical study. The XRD analysis of ZnO nano-thin films indicated a hexagonal multi-crystalline wurtzite structure with preferential growth lines (100), (002), (101) for ZnO nano-thin films with differe
... Show MoreCadmium oxide CdO thin films were prepared by successive ionic layer adsorption and reaction (SILAR) technique at varying number of dippings. The CdO thin films were prepared from a source material of Cadmium acetate and ammonium hydroxide solution deposited on glass substrate at 95℃. The prepared thin films were investigated by X-ray diffraction (XRD), Atomic force microscopy (AFM), Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR), and UV-Visible spectrometry. The XRD analysis reveals that the films were polycrystalline with cubic structure having preferential orientation along (1 1 1), (2 0 0), (2 2 0), and (3 1 1) planes. While the tests of the scanning electron microscopy and the atomic force mic
... Show MoreThe optical detectors which had been used in medical applications, and especially in radioactive treatments, need to be modified studied for the effects of radiations on them. This study included preparation of the MnS thin films in a way that vacuum thermal evaporation process at room temperature 27°C with thickness (400+-10nm) nm and a sedimentation rate of 0.39nm/sec on glass floors. The thin films prepared as a detector and had to be treated with neutron irradiation to examine the results gained from this process. The results decay X-ray (XRD) showed that all the prepared thin films have a multi-crystalline structure with the dominance of the direction (111), the two samples were irradiated with a neutron irradiation source (241Am-9Be)
... Show MoreIn this paper, silicon carbonitried thin films were prepared by the method of photolysis of the silane (SiH4) and ethylene (C2H4) gases, with and without ammonia gas (NH3), which is represented by the ratio between the (PNH3) and (PSiH4 + PC2H4 + PNH3), (which assign by the letter X), X has the values (0, 0.13, 0.33). This method carried out by using TEA-CO2 laser, on glass substrate at (375 oC), deposition rate (0.416-0.833) nm/pulse thin film thickness of (500-1000) nm. The optical properties of the films were studied by using Absorbance and Transmittance spectrums in wavelength range of (400-1100) nm, the results showed that the electronic transitions is indirect and the energy gap for the SiCN films increase with increasing of nitrog
... Show MoreAqueous root extract has been used to examine the green production of silver nanoparticles (AgNPs) by reducing the Ag+ ions in a silver nitrate solution. UV-Vis spectroscopy, X-ray diffraction, field emission scanning electron microscopy, and Fourier transform infrared spectroscopy (FTIR) were used to analyze the produced AgNPs. The AgNPs that were created had a maximum absorbance at 416 nm, were spherical in form, polydispersed in nature, and were 685 nm in size.The AgNPs demonstrated antibacterial efficacy against Escherichia coli and Staphylococcus. The dengue vector Aedes aegypti's second instar larvae were very susceptible to the AgNPs' powerful larvicidal action.