Optical Mark Recognition (OMR) is the technology of electronically extracting intended data from marked fields, such as squareand bubbles fields, on printed forms. OMR technology is particularly useful for applications in which large numbers of hand-filled forms need to be processed quickly and with a great degree of accuracy. The technique is particularly popular with schools and universities for the reading in of multiple choice exam papers. This paper proposed OMRbased on Modify Multi-Connect Architecture (MMCA) associative memory, its work in two phases: training phase and recognition phase. The proposed method was also able to detect more than one or no selected choice. Among 800 test samples with 8 types of grid answer sheets and total 58000 questions, the system exhibits an accuracy is 99.96% in the recognition of marked, thus making it suitable for real world applications.
This study intends to examine the content of photo coverage related to the Gulf Cup (Gulf 25) as presented by Iraqi photojournalists on Instagram between 02/01/2023 and 27/01/2023. Utilizing content analysis, the two researchers employed the survey method to evaluate 674 digital photos posted by seven photojournalists specializing in this sporting event, which concluded with the Iraqi team's victory in the city of Basra.
Key findings from the study include:
1. The Category "Photos from the Gulf Cup matches" predominated, accounting for 291 instances or 42.794% of the total.
2. Photojournalists exhibited a keen interest in capturing images of attending fans and documenting celebrations surrounding th
This study aimed to provide a conceptual model for the use and benefits of the e-Government as related to administrative fraud and financial corruption. The study also looked into their concepts, forms, dimensions and types and the role of e-Government on fraud reduction, corruption in administration and finance and its impact on the government performance. From the result, it is revealed that there is need for electronic government for implementation in order to curb the rate of fraud and administrative and financial corruption and improve the quality of service provision for better performance
TV medium derives its formal shape from the technological development taking place in all scientific fields, which are creatively fused in the image of the television, which consists mainly of various visual levels and formations. But by the new decade of the second millennium, the television medium and mainly (drama) became looking for that paradigm shift in the aesthetic formal innovative fields and the advanced expressive performative fields that enable it to develop in treating what was impossible to visualize previously. In the meantime, presenting what is new and innovative in the field of unprecedented and even the familiar objective and intellectual treatments. Thus the TV medium has sought for work
... Show MoreThe present study examines critically the discursive representation of Arab immigrants in selected American news channels. To achieve the aim of this study, twenty news subtitles have been exacted from ABC and NBC channels. The selected news subtitles have been analyzed within van Dijk’s (2000) critical discourse analysis framework. Ten discourse categories have been examined to uncover the image of Arab immigrants in the American news channels. The image of Arab immigrants has been examined in terms of five ideological assumptions including "us vs. them", "ingroup vs. outgroup", "victims vs. agents", "positive self-presentation vs. negative other-presentation", and "threat vs. non-threat". Analysis of data reveals that Arab immig
... Show MoreThe deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv
... Show MoreBackground: Body image is one of the most important psychological factors that affects adolescents’ personality and behavior. Body image can be defined as the person’s perceptions, thoughts, and feelings about his or her body.
Objectives: to identify the prevalence of body image concerns among secondary school students and its relation to different factors.
Subjects and methods: A cross-sectional study conducted in which 796 secondary school students participated and body shape concerns was investigated using the body shape questionnaire (BSQ-34).
Results: The prevalence of moderate/marked concern was (21.6%). Moderate/ marked body shape concern was significantly associated
... Show MoreThe issue of image captioning, which comprises automatic text generation to understand an image’s visual information, has become feasible with the developments in object recognition and image classification. Deep learning has received much interest from the scientific community and can be very useful in real-world applications. The proposed image captioning approach involves the use of Convolution Neural Network (CNN) pre-trained models combined with Long Short Term Memory (LSTM) to generate image captions. The process includes two stages. The first stage entails training the CNN-LSTM models using baseline hyper-parameters and the second stage encompasses training CNN-LSTM models by optimizing and adjusting the hyper-parameters of
... Show More