The current study focuses on utilizing artificial intelligence (AI) techniques to identify the optimal locations of production wells and types for achieving the production company’s primary objective, which is to increase oil production from the Sa’di carbonate reservoir of the Halfaya oil field in southeast Iraq, with the determination of the optimal scenario of various designs for production wells, which include vertical, horizontal, multi-horizontal, and fishbone lateral wells, for all reservoir production layers. Artificial neural network tool was used to identify the optimal locations for obtaining the highest production from the reservoir layers and the optimal well type. Fo
Transmission lines are generally subjected to faults, so it is advantageous to determine these faults as quickly as possible. This study uses an Artificial Neural Network technique to locate a fault as soon as it happens on the Doukan-Erbil of 132kv double Transmission lines network. CYME 7.1-Programming/Simulink utilized simulation to model the suggested network. A multilayer perceptron feed-forward artificial neural network with a back propagation learning algorithm is used for the intelligence locator's training, testing, assessment, and validation. Voltages and currents were applied as inputs during the neural network's training. The pre-fault and post-fault values determined the scaled values. The neural network's p
... Show MoreEnhancing quality image fusion was proposed using new algorithms in auto-focus image fusion. The first algorithm is based on determining the standard deviation to combine two images. The second algorithm concentrates on the contrast at edge points and correlation method as the criteria parameter for the resulted image quality. This algorithm considers three blocks with different sizes at the homogenous region and moves it 10 pixels within the same homogenous region. These blocks examine the statistical properties of the block and decide automatically the next step. The resulted combined image is better in the contras
... Show MoreIn this study, new heterocyclic compounds were synthesized through the cyclization reactions of o-phenylenediamine (1) with various organic reagents. Benzodiazepine derivatives (2-4) were obtained by reaction of (1) with ethylacetoacetate, malonic acid and acetyl acetone.Treatment of compound (1) with chloroacetamide, chloroacetic acid, p-bromophenacyl bromide and oxalic acid dihydrate afforded quinoxaline derivatives (5-8), respectively. Reaction of compound (1) with benzoic acid, piperonal, cyclohexanone and carbon disulfide resulted in the formation of compounds (9-12), respectively. Finally, reaction of compound (12) with chloroacetic acid in the presence of potassium hydroxide produced compound (13).
This research describes a new model inspired by Mobilenetv2 that was trained on a very diverse dataset. The goal is to enable fire detection in open areas to replace physical sensor-based fire detectors and reduce false alarms of fires, to achieve the lowest losses in open areas via deep learning. A diverse fire dataset was created that combines images and videos from several sources. In addition, another self-made data set was taken from the farms of the holy shrine of Al-Hussainiya in the city of Karbala. After that, the model was trained with the collected dataset. The test accuracy of the fire dataset that was trained with the new model reached 98.87%.
Software Defined Networking (SDN) with centralized control provides a global view and achieves efficient network resources management. However, using centralized controllers has several limitations related to scalability and performance, especially with the exponential growth of 5G communication. This paper proposes a novel traffic scheduling algorithm to avoid congestion in the control plane. The Packet-In messages received from different 5G devices are classified into two classes: critical and non-critical 5G communication by adopting Dual-Spike Neural Networks (DSNN) classifier and implementing it on a Virtualized Network Function (VNF). Dual spikes identify each class to increase the reliability of the classification
... Show MoreIsobaric Vapor-Liquid-Liquid equilibrium data for the binary systems ethyl acetate + water, toluene + water and the ternary system toluene + ethyl acetate + water were determined by a modified equilibrium still, the still consisted of a boiling and a condensation sections supplied with mixers that helped to correct the composition of the recycled condensed liquid and the boiling temperature readings in the condensation and boiling sections respectively. The VLLE data where predicted and correlated using the Peng-Robinson Equation of State in the vapor phase and one of the activity coefficient models Wilson, NRTL, UNIQUAC and the UNIFAC in the liquid phase and also were correlated using the Peng-Robinson Equation of State in both the vapo
... Show MoreIn the last few years, the use of artificial neural network analysis has increased, particularly, in geotechnical engineering problems and has demonstrated some success. In this research, artificial neural network analysis endeavors to predict the relationship between physical and mechanical properties of Baghdad soil by making different trials between standard penetration test, liquid limit, plastic limit, plasticity index, cohesion, angle of internal friction, and bearing capacity. The analysis revealed that the changes in natural water content and plastic limit have a great effect on the cohesion of soil and the angle of internal friction, respectively. . On the other hand, the liquid limit has a great impact on the bearing capacity and
... Show More