The COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our systematic literature review demonstrates that ML-powered tools can alleviate the burden on healthcare systems. These tools can analyze significant amounts of medical data and potentially improve predictive and preventive healthcare.
During the two last decades ago, audio compression becomes the topic of many types of research due to the importance of this field which reflecting on the storage capacity and the transmission requirement. The rapid development of the computer industry increases the demand for audio data with high quality and accordingly, there is great importance for the development of audio compression technologies, lossy and lossless are the two categories of compression. This paper aims to review the techniques of the lossy audio compression methods, summarize the importance and the uses of each method.
Multivariate Non-Parametric control charts were used to monitoring the data that generated by using the simulation, whether they are within control limits or not. Since that non-parametric methods do not require any assumptions about the distribution of the data. This research aims to apply the multivariate non-parametric quality control methods, which are Multivariate Wilcoxon Signed-Rank ( ) , kernel principal component analysis (KPCA) and k-nearest neighbor ( −
An image retrieval system is a computer system for browsing, looking and recovering pictures from a huge database of advanced pictures. The objective of Content-Based Image Retrieval (CBIR) methods is essentially to extract, from large (image) databases, a specified number of images similar in visual and semantic content to a so-called query image. The researchers were developing a new mechanism to retrieval systems which is mainly based on two procedures. The first procedure relies on extract the statistical feature of both original, traditional image by using the histogram and statistical characteristics (mean, standard deviation). The second procedure relies on the T-
... Show MoreThe research aims to reveal the recent trends used in providing information and to know the persuasive methods used in designing the content of the infographic as well as the nature of persuasive design methods and the topics presented by the infographic in the research sample. The researcher used the survey method, specifically the survey, by using the content analysis method to analyze the infographic material from the sample selected from the press and news sites that are the subject of the research, based on the method of what was said? How was it said? The researcher relied on the intentional sample, and this sample depends on the researcher selecting the vocabulary of the sample based on experiences and evaluating the c
... Show MoreThe extraction of Basil oil from Iraqi Ocimum basillicum leaves using n-hexane and petroleum ether as organic solvents were studied and compared. The concentration of oil has been determined in a variety of extraction temperatures and agitation speed. The solvent to solid ratio effect has been studied in order to evaluate the concentration of Ocimum basillicum oil. The optimum experimental conditions for the oil extraction were established as follows: n-hexane as organic solvent, 60 °C extraction temperature, 300 rpm agitation speed and 40:1mL:g amount of solvent to solid ratio.
In this paper, we will discuss the performance of Bayesian computational approaches for estimating the parameters of a Logistic Regression model. Markov Chain Monte Carlo (MCMC) algorithms was the base estimation procedure. We present two algorithms: Random Walk Metropolis (RWM) and Hamiltonian Monte Carlo (HMC). We also applied these approaches to a real data set.
The research aimed at designing teaching sessions using the self-scheduling strategy with a competitive style in learning handball as well as identifying differences between pre and post tests in both groups in learning short and long passes in handball. The researchers used the experimental method on 2nd-grade secondary school students. The researchers concluded using the self-scheduling strategy due to its positive effect on learning short and long handball passes in handball. Finally, the researchers recommended applying strategies and styles in teaching different school levels as well as making similar studies using teaching strategies and styles for learning handball skills in students.