The COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our systematic literature review demonstrates that ML-powered tools can alleviate the burden on healthcare systems. These tools can analyze significant amounts of medical data and potentially improve predictive and preventive healthcare.
In developing countries, conventional physico-chemical methods are commonly used for removing contaminants. These methods are not efficient and very costly. However, new in site strategy with high treatment efficiency and low operation cost named constructed wetland (CW) has been set. In this study, Phragmites australis was used with free surface batch system to estimate its ability to remediate total
petroleum hydrocarbons (TPH) and chemical oxygen demand (COD) from Al-Daura refinery wastewater. The system operated in semi-batch, thus, new wastewater was weekly added to the plant for 42 days. The results showed high removal percentages (98%) of TPH and (62.3%) for COD. Additionally, Phragmites australis biomass increased significant
The improvement in Direction of Arrival (DOA) estimation when the received signals impinge on Active-Parasitic Antenna (APA) arrays will be studied in this work. An APA array consists of several active antennas; others are parasitic antennas. The responses to the received signals are measured at the loaded terminals of the active element. The terminals of the parasitic element are shorted. The effect of the received signals on the parasites, i.e., the induced short-circuit current, is mutually coupled to the active elements. Eigen decomposition of the covariance matrix of the measurements of the APA array generates a third subspace in addition to the traditional signal and noise subspaces generated by the all-active ante
... Show MoreThis study focusses on the effect of using ICA transform on the classification accuracy of satellite images using the maximum likelihood classifier. The study area represents an agricultural area north of the capital Baghdad - Iraq, as it was captured by the Landsat 8 satellite on 12 January 2021, where the bands of the OLI sensor were used. A field visit was made to a variety of classes that represent the landcover of the study area and the geographical location of these classes was recorded. Gaussian, Kurtosis, and LogCosh kernels were used to perform the ICA transform of the OLI Landsat 8 image. Different training sets were made for each of the ICA and Landsat 8 images separately that used in the classification phase, and used to calcula
... Show Moreم.د. فاطمة حميد ،أ.م.د وفاء صباح محمد الخفاجي, International Journal of Psychosocial Rehabilitation,, 2020 - Cited by 1
This research studies the rheological properties ( plastic viscosity, yield point and apparent viscosity) of Non-Newtonian fluids under the effect of temperature using different chemical additives, such as (xanthan gum (xc-polymer), carboxyl methyl cellulose ( High and low viscosity ) ,polyacrylamide, polyvinyl alcohol, starch, Quebracho and Chrome Lignosulfonate). The samples were prepared by mixing 22.5g of bentonite with 350 ml of water and adding the additives in four different concentrations (3, 6, 9, 13) g by using Hamilton Beach mixer. The rheological properties of prepared samples were measured by using Fan viscometer model 8-speeds. All the samples were subjected to Bingham plastic model. The temperature range studi
... Show MoreThis work introduces a new electrode geometry for making holes with high aspect ratios on AISI 304 using an electrical discharge drilling (EDD) process. In addition to commercially available cylindrical hollow electrodes, an elliptical electrode geometry has been designed, manufactured, and implemented. The principal aim was to improve the removal of debris formed during the erosion process that adversely affects the aspect ratio, dimensional accuracy, and surface integrity. The results were compared and discussed to evaluate the effectiveness of electrode geometry on the machining performance of EDD process with respect to the material removal rate (MRR,) the electrode wear rate (EWR), and the tool wear ratio (TWR). Dimensional features an
... Show MoreThe accumulation of sediment in reservoirs poses a major challenge that impacts the storage capacity, quality of water, and efficiency of hydroelectric power generation systems. Geospatial methods, including Geographic Information Systems (GIS) and Remote Sensing (RS), were used to assess Dukan Reservoir sediment quantities. Satellite and reservoir water level data from 2010 to 2022 were used for sedimentation assessment. The satellite data was used to analyze the water spread area, employing the Normalized Difference Water Index (NDWI) and Modified Normalized Difference Water Index (MNDWI) to enhance the water surface in the satellite imagery of Dukan Reservoir. The cone formula was employed to calculate the live storag
... Show MoreThis work represents the set of measurements of radon and thoron concentrations levels of soil-gas in Al-Kufa city in Iraq using electric Radon meter (RAD-7). Radon and thoron concentration were measured in soil-gas in 20 location for three depth of (50, 100 and 150) cm.
The results show that the emanation rate of radon and thoron gas varied from location to anther, depending on the geological formation. The Radon concentration in soil has been found to vary from (12775±400) Bq/m3 at 150 cm depth in location (sample K2) to (41.45±17) Bq/m3, for depth 150 cm in location (sample K20). The thoron concentration in soil has been found to vary from (198±8.5) Bq/m3 at 150 cm depth in location samples (K1 & K2) to undetected in the mos