Preferred Language
Articles
/
KhZ2b4cBVTCNdQwCLkpS
Covid-19 Prediction using Machine Learning Methods: An Article Review
...Show More Authors

The COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our systematic literature review demonstrates that ML-powered tools can alleviate the burden on healthcare systems. These tools can analyze significant amounts of medical data and potentially improve predictive and preventive healthcare.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jul 01 2021
Journal Name
مجلة کلية التربية بالعريش
تحليل مستويات نوبات الهلع من جائحة کورونا COVID-19 باستخدام نظرية الاستجابة المفردة :دراسة تشخصية فارقة على عينات من المجتمع العربي
...Show More Authors

View Publication
Crossref
Publication Date
Tue Feb 28 2023
Journal Name
Tropical Journal Of Natural Product Research
Genetic Association of Angiotensin-converting enzyme 2 ACE-2 (rs2285666) Polymorphism with the Susceptibility of COVID-19 Disease in Iraqi Patients
...Show More Authors

Significant risks to human health are posed by the 2019 coronavirus illness (COVID-19). SARS coronavirus type 2 receptor, also known as the major enzyme in the renin-angiotensin system (RAS), angiotensin-converting enzyme 2 (ACE-2), connects COVID-19 and RAS. This study was conducted with the intention of determining whether or not RAS gene polymorphisms and ACE-2 (G8790A) play a part in the process of predicting susceptibility to infection with COVID-19. In this study 127 participants, 67 of whom were deemed by a physician to be in a severe state of illness, and 60 of whom were categorized as "healthy controls" .The genetic study included an extraction of genomic DNA from blood samples of each covid 19 patients and healthy control

... Show More
View Publication
Scopus (8)
Crossref (3)
Scopus Crossref
Publication Date
Thu Apr 08 2021
Journal Name
International Journal Of Dental Hygiene
Oral health awareness, attitude towards dental treatment, fear of infection and economic impact during COVID‐19 pandemic in the Middle East
...Show More Authors
Abstract<sec><title>Objectives

To assess the impact of COVID‐19 on oral hygiene (OH) awareness, attitude towards dental treatment, fear of infection and economic impact in the Middle East.

Methods

This survey was performed by online distribution of questionnaires in three countries in the Middle East (Jordan, Iraq and Egypt). The questionnaire consisted of five sections: the first section was aimed at collecting demographic data and the rest sections used to assess OH awareness, attitude towards dental treatment, degree of fear and economic impact of COVID‐19. The answers were either multiple choice, closed‐end (Yes or N

... Show More
View Publication
Scopus (17)
Crossref (18)
Scopus Clarivate Crossref
Publication Date
Tue Oct 04 2022
Journal Name
Cureus
The Impact of Angiotensin Converting Enzyme-2 (ACE-2) on Bone Remodeling Marker Osteoprotegerin (OPG) in Post-COVID-19 Iraqi Patients
...Show More Authors

View Publication Preview PDF
Crossref (6)
Clarivate Crossref
Publication Date
Thu Mar 31 2016
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Permeability Prediction in One of Iraqi Carbonate Reservoir Using Hydraulic Flow Units and Neural Networks
...Show More Authors

Permeability determination in Carbonate reservoir is a complex problem, due to their capability to be tight and heterogeneous, also core samples are usually only available for few wells therefore predicting permeability with low cost and reliable accuracy is an important issue, for this reason permeability predictive models become very desirable.

   This paper will try to develop the permeability predictive model for one of  Iraqi carbonate reservoir from core and well log data using the principle of Hydraulic Flow Units (HFUs). HFU is a function of Flow Zone Indicator (FZI) which is a good parameter to determine (HFUs).

   Histogram analysis, probability analysis and Log-Log plot of Reservoir Qua

... Show More
View Publication Preview PDF
Publication Date
Thu Jan 03 2019
Journal Name
International Journal Of Civil Engineering And Technology (ijciet)
Condition Prediction Models of Deteriorated Trunk Sewer Using Multinomial Logistic Regression and Artificial Neural Network
...Show More Authors

Sewer systems are used to convey sewage and/or storm water to sewage treatment plants for disposal by a network of buried sewer pipes, gutters, manholes and pits. Unfortunately, the sewer pipe deteriorates with time leading to the collapsing of the pipe with traffic disruption or clogging of the pipe causing flooding and environmental pollution. Thus, the management and maintenance of the buried pipes are important tasks that require information about the changes of the current and future sewer pipes conditions. In this research, the study was carried on in Baghdad, Iraq and two deteriorations model's multinomial logistic regression and neural network deterioration model NNDM are used to predict sewers future conditions. The results of the

... Show More
Publication Date
Fri Dec 23 2022
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Descriptive, Prospective Observational Study- Studying Possible Prediction Factors for Disease Severity and Progression among a Sample of COVD 19 Patients in Iraq
...Show More Authors

Abstract

Coronavirus has affected many people around the world and caused an increase in the number of hospitalized patients and deaths. The prediction factor may help the physician to classify whether the patient needs more medical attention to decrease mortality and worsening of symptoms. We aimed to study the possible relationship between C reactive protein level and the severity of symptoms and its effect on the prognosis of the disease. And determine patients who require closer respiratory monitoring and more aggressive supportive therapies to avoid poor prognosis. The data was gathered using medical record data, the patient's medical history, and the onset of symptoms, as well as a blood sample to test the

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Wed Jun 01 2011
Journal Name
Journal Of Al-nahrain University Science
Breaking Knapsack Cipher Using Population Based Incremental Learning
...Show More Authors

View Publication
Crossref
Publication Date
Fri Sep 01 2023
Journal Name
Journal Of Engineering
Iraqi Sentiment and Emotion Analysis Using Deep Learning
...Show More Authors

Analyzing sentiment and emotions in Arabic texts on social networking sites has gained wide interest from researchers. It has been an active research topic in recent years due to its importance in analyzing reviewers' opinions. The Iraqi dialect is one of the Arabic dialects used in social networking sites, characterized by its complexity and, therefore, the difficulty of analyzing sentiment. This work presents a hybrid deep learning model consisting of a Convolution Neural Network (CNN) and the Gated Recurrent Units (GRU) to analyze sentiment and emotions in Iraqi texts. Three Iraqi datasets (Iraqi Arab Emotions Data Set (IAEDS), Annotated Corpus of Mesopotamian-Iraqi Dialect (ACMID), and Iraqi Arabic Dataset (IAD)) col

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
Spatial Prediction of Monthly Precipitation in Sulaimani Governorate using Artificial Neural Network Models
...Show More Authors

ANN modeling is used here to predict missing monthly precipitation data in one station of the eight weather stations network in Sulaimani Governorate. Eight models were developed, one for each station as for prediction. The accuracy of prediction obtain is excellent with correlation coefficients between the predicted and the measured values of monthly precipitation ranged from (90% to 97.2%). The eight ANN models are found after many trials for each station and those with the highest correlation coefficient were selected. All the ANN models are found to have a hyperbolic tangent and identity activation functions for the hidden and output layers respectively, with learning rate of (0.4) and momentum term of (0.9), but with different data

... Show More
View Publication Preview PDF
Crossref