The COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our systematic literature review demonstrates that ML-powered tools can alleviate the burden on healthcare systems. These tools can analyze significant amounts of medical data and potentially improve predictive and preventive healthcare.
ABSTRACT Objective: Cardiovascular diseases are the first ranked cause of death worldwide. Adhering to health promoting lifestyle behaviors will maintain an individual’s cardiovascular health and decrease the risk of cardiovascular diseases. Methods: In this descriptive study, 150 nursing faculty were surveyed via a non-probability (purposive) sampling method to assess their adherence to health promoting lifestyle in order to know the risk of cardiovascular diseases. The Arabic version of Health-Promoting Lifestyle Profile II (HPLP-II) was used to achieve this goal. Results: Seventy-two nursing faculty completed the survey. The results indicated that the study sample had moderate level of health promotion based on Health-Promot
... Show MoreBackground: Although underdeveloped in Iraq, telehealth was one tool used to continue health service provision during the COVID-19 pandemic. Aim: To assess women’s experiences and satisfaction with gynaecological and obstetric telehealth services in Iraq during the COVID-19 pandemic. Methods: Free telehealth services were provided by 4 obstetrician-gynaecologists associated with private clinics in 2020–2021. All patients who accessed the services between June 2020 and February 2021 were invited to complete a postconsultation survey on their experience and satisfaction with services. Results were analysed using descriptive statistics and logistic regression conducted using SPSS version 25. Results: A total of 151 (30.2%) women re
... Show More
Sentiment analysis is one of the major fields in natural language processing whose main task is to extract sentiments, opinions, attitudes, and emotions from a subjective text. And for its importance in decision making and in people's trust with reviews on web sites, there are many academic researches to address sentiment analysis problems. Deep Learning (DL) is a powerful Machine Learning (ML) technique that has emerged with its ability of feature representation and differentiating data, leading to state-of-the-art prediction results. In recent years, DL has been widely used in sentiment analysis, however, there is scarce in its implementation in the Arabic language field. Most of the previous researches address other l
... Show MoreCNC machine is used to machine complex or simple shapes at higher speed with maximum accuracy and minimum error. In this paper a previously designed CNC control system is used to machine ellipses and polylines. The sample needs to be machined is drawn by using one of the drawing software like AUTOCAD® or 3D MAX and is saved in a well-known file format (DXF) then that file is fed to the CNC machine controller by the CNC operator then that part will be machined by the CNC machine. The CNC controller using developed algorithms that reads the DXF file feeds to the machine, extracts the shapes from the file and generates commands to move the CNC machine axes so that these shapes can be machined.
Background: The novel coronavirus disease (COVID-19) is caused by Severe acute respiratory syndrome coronavirus 2 (SARS-Cov2) which utilizes angiotensin converting enzyme2 (ACE2) to invade the host cells. This membrane-bound peptidase is widely distributed in the body; its activity antagonizes the renin-angiotensin-aldosterone system (RAAS). Once SARS-Cov2 enters the cell, it causes downregulation of ACE2, resulting in the unopposed activation of RAAS. The unregulated activity of the RAAS system can deteriorate the prognosis in COVID-19 patients. A soluble form of ACE2 (sACE2) was reported to have a role in the SARS-Cov2 invasion of the susceptible cells.
Aim of the study: This study aims to inve
... Show MoreEarly detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med
... Show More