A procedure for the mutual derivatization and determination of thymol and Dapsone was developed and validated in this study. Dapsone was used as the derivatizing agent for the determination of thymol, and thymol was used as the derivatizing agent for the determination of Dapsone. An optimization study was performed for the derivatization reaction; i.e., the diazonium coupling reaction. Linear regression calibration plots for thymol and Dapsone in the direct reaction were constructed at 460 nm, within the concentration range of 0.3-7 μg ml-1 for thymol and 0.3-4 μg ml-1 for Dapsone, with limits of detection 0.086 and 0.053 μg ml-1, respectively. Corresponding plots for the cloud point extraction of thymol and Dapsone were constructed at 460 nm, within the concentration range of 0.1-2 μg ml-1 for thymol and 0.1-1.8 μg ml-1 for Dapsone, with limits of detection 0.0445 and 0.023 μg ml-1, respectively. Correlation coefficients and molar absorptivities were improved using cloud point extraction. The proposed method can be applied for their trace detection in different matrices.
The purpose of this work is to concurrently estimate the UVvisible spectra of binary combinations of piroxicam and mefenamic acid using the chemometric approach. To create the model, spectral data from 73 samples (with wavelengths between 200 and 400 nm) were employed. A two-layer artificial neural network model was created, with two neurons in the output layer and fourteen neurons in the hidden layer. The model was trained to simulate the concentrations and spectra of piroxicam and mefenamic acid. For piroxicam and mefenamic acid, respectively, the Levenberg-Marquardt algorithm with feed-forward back-propagation learning produced root mean square errors of prediction of 0.1679 μg/mL and 0.1154 μg/mL, with coefficients of determination of
... Show MoreThe current study aimed to identify the difficulties faced by the student in mathematics and possible proposals to address these difficulties. The study used a descriptive method also used the questionnaire to collect data and information were applied to a sample of (163) male and female teachers. The results of the study found that the degree of difficulties in learning mathematics for the fifth and sixth grades is high for some paragraphs and intermediate for other paragraphs, included the student's field. The results also revealed that there were no statistically significant differences at the level of significance (α = 0.05) between the responses of the members of the study sample from male and female teachers to the degree of diffi
... Show MoreBovine milk is one of the richest nutrients that contain minerals and vitamins that enhance immunity, especially in children, but because many children do not want to drink the raw milk, therefore this study aimed to enhance the sensory characteristics of raw milk by using hibiscus plant extract, which is characterized by red color and distinctive flavor as well as studying the effect of aqueous extract of Hibiscus sabdariffa on inhibiting the growth of microorganisms, by using three concentrations of the aqueous extract (0.5, 1.0 and 1.5%), where the statistical results showed a significant difference (P≤0.05) between the concentrations in color, texture and general acceptance, and the best results appeared when using
... Show Moreهدف البحث التعرف الى اسباب سلوك التنمر لدى طلاب الصف الاول المتوسط من وجهة نظر المدرسين والمدرسات واساليب تعديله، واستعمل الباحثان المنهج الوصفي واختيار عينة عشوائية من المدرسين والمدرسات في متوسطة أرض الرافدين ومتوسطة الرحمن للبنين وكان عددهم (46) مدرساً ومدرسة بواقع (32) مدرساً و(14) مدرسة، واعتمد الباحثان الاستبانة أداة للتعرف الى اسباب سلوك التنمر واساليب تعديله، واشارت نتائج البحث الى تنوع اسباب التن
... Show MoreClinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists must revise demographic and clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, and Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on corneal topographic maps. We consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), and MobileNet-v2 (MN), and fine-tune them on a dataset of KCN and normal cases, each including four topographic maps. We also consider a PI classifier. Then, our EDTL method combines the output probabilities of each of the five classifiers to obtain a decision b
Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D
... Show More