The use of deep learning.
The study of the subject of (Egyptian public opinion on the Libyan revolution) came to reveal the role of Egyptian public opinion in mobilizing and solidarity for the masses. With the events witnessed by the Arab countries before the revolution, this was evident by the people 's attitudes towards the tripartite aggression against Egypt in 1956, and the June 1967 war, and the most recent what the Egyptian people showed towards the Libyan revolution. The Egyptian press followed the completion of the arms deal with France and revealed the ability of the Libyan negotiator to achieve moral gain, supported by Egyptian support to thwart the United States intentions to arm "Israel" similarly. The Egyptian people expressed a love for peace and su
... Show MoreRecently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural
... Show MoreIdentifying breast cancer utilizing artificial intelligence technologies is valuable and has a great influence on the early detection of diseases. It also can save humanity by giving them a better chance to be treated in the earlier stages of cancer. During the last decade, deep neural networks (DNN) and machine learning (ML) systems have been widely used by almost every segment in medical centers due to their accurate identification and recognition of diseases, especially when trained using many datasets/samples. in this paper, a proposed two hidden layers DNN with a reduction in the number of additions and multiplications in each neuron. The number of bits and binary points of inputs and weights can be changed using the mask configuration
... Show MoreOne study whose importance has significantly grown in recent years is lip-reading, particularly with the widespread of using deep learning techniques. Lip reading is essential for speech recognition in noisy environments or for those with hearing impairments. It refers to recognizing spoken sentences using visual information acquired from lip movements. Also, the lip area, especially for males, suffers from several problems, such as the mouth area containing the mustache and beard, which may cover the lip area. This paper proposes an automatic lip-reading system to recognize and classify short English sentences spoken by speakers using deep learning networks. The input video extracts frames and each frame is passed to the Viola-Jone
... Show MoreWith the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor se
... Show MoreAn immunological technique was investigated for the detection of human semen in forensic analysis.This technique included a preparation of anti-human seminal plasma antibodies, by immunizing rabbits with treated human semen. The human semen was treated with an acid to prevent cross reactivity with other human body fluids. The antibody produced was tested against different animal,s seminal fluid samples (dog, goat ,sheep, cow) and human body fluids( saliva, blood , vaginal fluid, ear wax and human semen). It was found that using this developed technique was only selectively responsed with human semen . The prepered kit was evaluated and tested in Forensic laboratory- Ministry of Health. Finally, results were obtained in a c
... Show MoreThe aim of this research is to design and construct a
semiconductor laser range finder operating in the near infrared range
for ranging and designation. The main part of the range finder is the
transmitter which is a semiconductor laser type GaAs of wavelength
0.904 μm with a beam expander and the receiver; a silicon pin
detector biased to approve the fast response time with it's collecting
optics. The transmitters pulse width was 200ns at a threshold current
of 10 Ampere and maximum operating current of 38 Ampere. The
repetition rate was set at 660Hz and the maximum operating output
power was around 1 watt. The divergence of the beam was 0.268o
the efficiency of the laser was 0.03% at a duty cycle of 1.32x
The wake potential and wake phenomena for swift proton in an amorphous carbon target were studied by utilising various dielectric function formalisms, including the Drude dielectric function, the Drude–Lorentz dielectric function and quantum dielectric function. The Drude model results exhibited a damped oscillatory behaviour in the longitudinal direction behind the projectile; the pattern of these oscillations decreases exponentially in the transverse direction. In addition, the wake potential extends slightly ahead of the projectile which also depends on the proton coordinate and velocity. The effect of electron binding on the wake potential, characterised by the ratio to 0.1, has been studied alongside the Drude–Lorentz dielectric
... Show MoreDetection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with
... Show More