BACKGROUND: Burkholderia cepacia adhesion and biofilm formation onto abiotic surfaces is an important feature of clinically relevant isolates. The in vitro biofilm formation of B. cepacia onto coated indwelling urinary catheters (IDCs) with moxifloxacin has not been previously investigated. OBJECTIVES: To examine the ability of B. cepacia to form biofilms on IDCs and the effect of coating IDCs with moxifloxacin on biofilm formation by B. cepacia in vitro. MATERIAL AND METHODS: The adhesion of B. cepacia to coated and uncoated IDCs with moxifloxacin was evaluated. Pieces of IDCs were coated with moxifloxacin (adsorption method). The spectrophotometric method was used to check moxifloxacin leaching into tubes. Coated and uncoated tubes were incubated with 107 colony forming units (cfu)/mL of B. cepacia. The viable bacterial count was used to count the number of bacteria adhered to coated and uncoated IDC pieces. RESULTS: A significant adhesion of B. cepacia to uncoated IDC pieces started 15 min after the incubation in a bacterial suspension (107 cfu/mL). A maximum adhesion was observed at 48 h. The pretreatment of IDCs with 100 μg/mL of moxifloxacin produced the best adsorption of antibiotic onto the IDCs. Coating IDC pieces with moxifloxacin significantly reduced the adhesion and biofilm formation of B. cepacia (p < 0.05) at various time intervals (1 h, 4 h and 24 h). CONCLUSIONS: The present study has demonstrated for the first time that coated IDCs with moxifloxacin reduce B. cepacia adhesion and biofilm formation. This finding has opened the door to the production of the new generation IDCs that prevent bacteria from attaching and forming biofilms.
The Compressional-wave (Vp) data are useful for reservoir exploration, drilling operations, stimulation, hydraulic fracturing employment, and development plans for a specific reservoir. Due to the different nature and behavior of the influencing parameters, more complex nonlinearity exists for Vp modeling purposes. In this study, a statistical relationship between compressional wave velocity and petrophysical parameters was developed from wireline log data for Jeribe formation in Fauqi oil field south Est Iraq, which is studied using single and multiple linear regressions. The model concentrated on predicting compressional wave velocity from petrophysical parameters and any pair of shear waves velocity, porosity, density, and
... Show MorePorous silicon (PS) layers are prepared by anodization for
different etching current densities. The samples are then
characterized the nanocrystalline porous silicon layer by X-Ray
Diffraction (XRD), Atomic Force Microscopy (AFM), Fourier
Transform Infrared (FTIR). PS layers were formed on n-type Si
wafer. Anodized electrically with a 20, 30, 40, 50 and 60 mA/cm2
current density for fixed 10 min etching times. XRD confirms the
formation of porous silicon, the crystal size is reduced toward
nanometric scale of the face centered cubic structure, and peak
becomes a broader with increasing the current density. The AFM
investigation shows the sponge like structure of PS at the lower
current density porous begi
The research problem has crystallized and in light of these capabilities, the level of performance depends on the application of modern training methods based on actual experimentation, and those methods aim to develop the components of achievement in this competition, including the quantities of exerting the distinctive strength with speed for the arms and feet, which reflects on good skillful performance because the skill of shooting by jumping forward and high forms A major role in achieving goals during the competition that qualifies the team to win, and through the follow-up of the researcher in the field and academic field, I noticed that there is a weakness in some physical abilities, which affects performance and skill level
... Show MoreThis paper deals with the numerical solution of the discrete classical optimal control problem (DCOCP) governing by linear hyperbolic boundary value problem (LHBVP). The method which is used here consists of: the GFEIM " the Galerkin finite element method in space variable with the implicit finite difference method in time variable" to find the solution of the discrete state equation (DSE) and the solution of its corresponding discrete adjoint equation, where a discrete classical control (DCC) is given. The gradient projection method with either the Armijo method (GPARM) or with the optimal method (GPOSM) is used to solve the minimization problem which is obtained from the necessary conditi
... Show MoreCore decompression is one of the commonest used techniques in the handling of osteonecrosis of the pre-collapsed head of the femur. Core decompression had succeeded in preserving the hip joint and delaying the requisite for total hip replacement, but it had failed in the induction of osteogenesis in the necrotic area, thus augmenting core decompression with biological agents to induce osteogenic activity. To assess the effects of platelet-rich plasma in non-traumatic avascular necrosis of the hip joint (early stage) after core decompression. Interventional comparative study for twenty-four patients (32 hip joints) with AVN of the head of the femur was involved in this prospective study, and they were separated into two groups of 16
... Show MoreThis paper aims to improve the voltage profile using the Static Synchronous Compensator (STATCOM) in the power system in the Kurdistan Region for all weak buses. Power System Simulation studied it for Engineers (PSS\E) software version 33.0 to apply the Newton-Raphson (NR) method. All bus voltages were recorded and compared with the Kurdistan region grid index (0.95≤V ≤1.05), simulating the power system and finding the optimal size and suitable location of Static Synchronous Compensator (STATCOM)for bus voltage improvement at the weakest buses. It shows that Soran and New Koya substations are the best placement for adding STATCOM with the sizes 20 MVAR and 40 MVAR. After adding STATCOM with the sizes [20MVAR and 40MV
... Show MoreRemoving Congo red (CR) is critical in wastewater treatment. We introduce a combination of electrocoagulation (EC) and electro-oxidation (EO) to address the elimination of CR. We also discuss the deposition of triple oxides (Cu–Mn–Ni) simultaneously on both anodic and cathodic graphite electrodes at constant current density. These electrodes efficiently worked as anodes in the EC-EO system. The EC-CO combination eliminated around 98 % of the CR dye and about 95 % of the Chemical Oxygen demand (COD), and similar results were obtained with the absence of NaCl. Thus, EC-EO is a promising technique to remove CR in an environmentally friendly pathway.
The Electro-Fenton oxidation process is one of the essential advanced electrochemical oxidation processes used to treat Phenol and its derivatives in wastewater. The Electro-Fenton oxidation process was carried out at an ambient temperature at different current density (2, 4, 6, 8 mA/cm2) for up to 6 h. Sodium Sulfate at a concentration of 0.05M was used as a supporting electrolyte, and 0.4 mM of Ferrous ion concentration (Fe2+) was used as a catalyst. The electrolyte cell consists of graphite modified by an electrodepositing layer of PbO2 on its surface as anode and carbon fiber modified with Graphene as a cathode. The results indicated that Phenol concentration decreases with an increase in current dens
... Show More