This Book is intended to be textbook studied for undergraduate course in multivariate analysis. This book is designed to be used in semester system. In order to achieve the goals of the book, it is divided into the following chapters. Chapter One introduces matrix algebra. Chapter Two devotes to Linear Equation System Solution with quadratic forms, Characteristic roots & vectors. Chapter Three discusses Partitioned Matrices and how to get Inverse, Jacobi and Hessian matrices. Chapter Four deals with Multivariate Normal Distribution (MVN). Chapter Five concern with Joint, Marginal and Conditional Normal Distribution, independency and correlations. Many solved examples are intended in this book, in addition to a variety of unsolved relied problems at the end of each chapter to enrich the statistical knowledge of our students.
In this paper we design a Simulink model which can be evaluate the concentration of Copper, Lead, Zinc, Cadmium, Cobalt, Nickel, Crum and Iron. So, this model would be a method to determine the contamination levels of these metals with the potential for this contamination sources with their impact. The aim of using Simulink environment is to solve differential equations individually and as given data in parallel with analytical mathematics trends. In general, mathematical models of the spread heavy metals in soil are modeled and solve to predict the behavior of the system under different conditions.
The Boltzmann equation has been solved using (EEDF) package for a pure sulfur hexafluoride (SF6) gas and its mixtures with buffer Helium (He) gas to study the electron energy distribution function EEDF and then the corresponding transport coefficients for various ratios of SF6 and the mixtures. The calculations are graphically represented and discussed for the sake of comparison between the various mixtures. It is found that the various SF6 – He content mixtures have a considerable effect on EEDF and the transport coefficients of the mixtures
The one-dimensional, spherical coordinate, non-linear partial differential equation of transient heat conduction through a hollow spherical thermal insulation material of a thermal conductivity temperature dependent property proposed by an available empirical function is solved analytically using Kirchhoff’s transformation. It is assumed that this insulating material is initially at a uniform temperature. Then, it is suddenly subjected at its inner radius with a step change in temperature. Four thermal insulation materials were selected. An identical analytical solution was achieved when comparing the results of temperature distribution with available analytical solution for the same four case studies that assume a constant thermal con
... Show MoreThis study is concerned with the derivation of differential equation of motion for the free coupled vertical – torsional and lateral vibration of opened thin-walled curved beams. The curved beam to be considered in this study is of isotropic opened thin – walled (I) section with equal top and bottom flanges. The derivation depends on Hamilton's principle which required finding the potential and kinetic energy of the curved beam section due to internal stresses and all types of movements (Vertical,Torsional and Lateral) .The effect of restrained warping displacement is also considered in this study. Three differential equations are derived for vertical, torsional and lateral movement .and approximate solutions are developed by using the
... Show MoreAn experimental study was conducted on pressure drop of water flow through vertical cylindrical packed beds in turbulent region and the influence of the operating parameters on its behavior. The bed packing was made of spherical and non-spherical particles (spheres, Rasching rings and intalox saddle) with aspect ratio range 3.46 D/dp 8.486 obtaining bed porosities 0.396 0.84 and Reynolds number 1217 21758. The system is consisted of 5 cm inside diameter Perspex column, 50 cm long; distilled water was pumped through the bed with flow rate 875, 1000, 1125, 1250,1375 and 1500 l/h and inlet water temperature 20, 30, 40 and 50 ˚C. The packed bed system was monitored by using LabVIEW program, were the result
... Show MoreIn this paper, third order non-polynomial spline function is used to solve 2nd kind Volterra integral equations. Numerical examples are presented to illustrate the applications of this method, and to compare the computed results with other known methods.
In this work, the fractional damped Burger's equation (FDBE) formula = 0,
The one-dimensional, cylindrical coordinate, non-linear partial differential equation of transient heat conduction through a hollow cylindrical thermal insulation material of a thermal conductivity temperature dependent property proposed by an available empirical
function is solved analytically using Kirchhoff’s transformation. It is assumed that this insulating material is initially at a uniform temperature. Then, it is suddenly subjected at its inner radius with a step change in temperature. Four thermal insulation materials were selected. An identical analytical solution was achieved when comparing the results of temperature distribution with available analytical solution for the same four case studies that assume a constant the
In this paper, several types of space-time fractional partial differential equations has been solved by using most of special double linear integral transform â€double Sumudu â€. Also, we are going to argue the truth of these solutions by another analytically method “invariant subspace methodâ€. All results are illustrative numerically and graphically.
In this paper, we introduce and discuss an algorithm for the numerical solution of two- dimensional fractional partial differential equation with parameter. The algorithm for the numerical solution of this equation is based on implicit and an explicit difference method. Finally, numerical example is provided to illustrate that the numerical method for solving this equation is an effective solution method.