Concrete columns with hollow-core sections find widespread application owing to their excellent structural efficiency and efficient material utilization. However, corrosion poses a challenge in concrete buildings with steel reinforcement. This paper explores the possibility of using glass fiber-reinforced polymer (GFRP) reinforcement as a non-corrosive and economically viable substitute for steel reinforcement in short square hollow concrete columns. Twelve hollow short columns were meticulously prepared in the laboratory experiments and subjected to pure axial compressive loads until failure. All columns featured a hollow square section with exterior dimensions of (180 × 180) mm and 900 mm height. The columns were categorized into four separate groups with different variables: steel and GFRP longitudinal reinforcement ratio, hollow ratio, spacing between ties, and reinforcement type. The experimental findings point to the compressive participation of longitudinal GFRP bars, estimated to be approximately 35% of the tensile strength of GFRP bars. Notably, increasing GFRP longitudinal reinforcement significantly improved the ultimate load capability of hollow square GFRP column specimens. Specifically, elevating the ratio of GFRP reinforcement from 1.46% to 2.9%, 3.29%, 4.9%, and 5.85% resulted in axial load capacity improvements of 32.3%, 43.9%, 60.5%, and 71.7%, respectively. Specifically, the GFRP specimens showed a decrease in capacity of 13.1%, 9.2%, and 9.4%, respectively. Notably, the load contribution of steel reinforcement to GFRP reinforcement (with similar sectional areas) was from approximately three to four times the axial peak load, highlighting the greater load participation of steel reinforcement due to its higher elastic modulus. In addition, the numerical modeling and analysis conducted using ABAQUS/CAE 2019 software exhibited strong concordance with experimental findings concerning failure modes and capacity to carry axial loads.
With the increasing intensity of the ecological and environmental problems and the scarcity of fresh water, this paper was introduced to investigate the ability to use treated wastewater as a cooling media via studying its behavior throughout a cooling tower. The simultaneous transfer of heat and mass from the treated wastewater to air over splash-fill packing arranged in a zigzag manner was studied. The characteristic of the cooling tower, the outlet water temperature, and the rejected heat were investigated as the water-to-air ratio and inlet water temperature were varied. The core results show that the cooling tower of the tower decreases with increasing water-to-air ratio, and increases with the raise of inlet water temperature.
... Show MoreEvaluating the behavior of a ring foundation resting on multi-layered soil is one of the important issues facing civil engineers. Many researchers have studied the behavior of ring foundation rests on multi-layered soil with vertical loads acting on the foundation. In real life ring foundation can be subjected to both vertical and horizontal loads at the same time due to wind or the presence of soil. In this research, the behavior of ring footing subjected to inclined load has been studied using PLAXIS software. Furthermore, the effect of multi-layered soil has been simulated in the model. The results showed that both vertical and horizontal stresses are mainly affected when the inclination angle of the load exceeded 45 degrees with a reduc
... Show MoreTo evaluate and improve the efficiency of photovoltaic solar modules connected with linear pipes for water supply, a three-dimensional numerical simulation is created and simulated via commercial software (Ansys-Fluent). The optimization utilizes the principles of the 1st and 2nd laws of thermodynamics by employing the Response Surface Method (RSM). Various design parameters, including the coolant inlet velocity, tube diameter, panel dimensions, and solar radiation intensity, are systematically varied to investigate their impacts on energetic and exergitic efficiencies and destroyed exergy. The relationship between the design parameters and the system responses is validated through the development of a predictive model. Both single and mult
... Show MoreThis paper presents the design and analysis of composite right left hand (CRLH) electromagnetic bandgap (EBG) structure. The proposed unit cell is consistent of a dielectric substrate with dimensions of 5×5×1 mm 3 made of FR4-Epoxy with εr = 4.4 underneath of a conductive patch with dimensions of 4.4×4.4mm 2 . The unit cell is structured to perform a negative permittivity (ε) and negative permeability (µ) in different bands. The proposed unit cell is developed to 5G systems in the sub-6GHz bands. In this work, a complete analysis of the unit cell in terms of Sparameters, constitutive parameters and refraction index are evaluated using HFSS simulation package based on Finite Element Method (FEM).
Renewable energy resources have become a promissory alternative to overcome the problems related to atmospheric pollution and limited sources of fossil fuel energy. The technologies in the field of renewable energy are used also to improve the ventilation and cooling in buildings by using the solar chimney and heat exchanger. This study addresses the design, construction and testing of a cooling system by using the above two techniques. The aim was to study the effects of weather conditions on the efficiency of this system which was installed in Baghdad for April and May 2020. The common weather in these months is hot in Baghdad. The test room of the design which has a size of 1 m3 was situated to face the geographical south. The te
... Show MoreA field experiment was carried out in the College of Agricultural Engineering Sciences - University of Baghdad, during the fall season of 2021 to find out which cultivated cultivars of maize are efficient under nitrogen fertilization. The experiment was applied according to an RCBD (split-plot design with three replications). The cultivars of the experiment (Baghdad, 5018, Sarah) supply three levels of nitrogen fertilizer, which are N1 (100 kg.N/ha), N2 (200 kg.N/ha) and N3 (300 kg.N/ha). The statistical analysis results showed the superiority of the Sarah genotype, which gave the highest value of SOD and CAT enzymes, reaching 11.59 units mg-1 and 10.76 units mg-1 . Protein sequentially, while cultivar5018 outperformed as it gave th
... Show MoreThis paper presents the effect of Cr doping on the optical and structural properties of TiO2 films synthesized by sol-gel and deposited by the dip- coating technique. The characteristics of pure and Cr-doped TiO2 were studied by absorption and X-ray diffraction measurement. The spectrum of UV absorption of TiO2 chromium concentrations indicates a red shift; therefore, the energy gap decreases with increased doping. The minimum value of energy gap (2.5 eV) is found at concentration of 4 %. XRD measurements show that the anatase phase is shown for all thin films. Surface morphology measurement by atomic force microscope (AFM) showed that the roughness of thin films decrease with doping and has a minimum value with 4 wt % doping ratio.
This research aims to create lightweight concrete mixtures containing waste from local sources, such as expanded polystyrene (EPS) beads and waste plastic fibers (WPFs), all are cheap or free in the Republic of Iraq and without charge. The modern, rigid, and mechanical properties of LWC were investigated, and the results were evaluated. Three mixtures were made, each with different proportions of plastic fibers (0.4%, 0.8%, 1.2%), in addition to a lightweight concrete mixture containing steak fibers (0.4%, 0.8%, 1.2%), in addition to a lightweight concrete mixture. It contains 20% EPS. The study found that the LWC caused by the addition of WPFs reduced the density (lightweight) of the concrete mixtures because EPS tends
... Show More