Concrete columns with hollow-core sections find widespread application owing to their excellent structural efficiency and efficient material utilization. However, corrosion poses a challenge in concrete buildings with steel reinforcement. This paper explores the possibility of using glass fiber-reinforced polymer (GFRP) reinforcement as a non-corrosive and economically viable substitute for steel reinforcement in short square hollow concrete columns. Twelve hollow short columns were meticulously prepared in the laboratory experiments and subjected to pure axial compressive loads until failure. All columns featured a hollow square section with exterior dimensions of (180 × 180) mm and 900 mm height. The columns were categorized into four separate groups with different variables: steel and GFRP longitudinal reinforcement ratio, hollow ratio, spacing between ties, and reinforcement type. The experimental findings point to the compressive participation of longitudinal GFRP bars, estimated to be approximately 35% of the tensile strength of GFRP bars. Notably, increasing GFRP longitudinal reinforcement significantly improved the ultimate load capability of hollow square GFRP column specimens. Specifically, elevating the ratio of GFRP reinforcement from 1.46% to 2.9%, 3.29%, 4.9%, and 5.85% resulted in axial load capacity improvements of 32.3%, 43.9%, 60.5%, and 71.7%, respectively. Specifically, the GFRP specimens showed a decrease in capacity of 13.1%, 9.2%, and 9.4%, respectively. Notably, the load contribution of steel reinforcement to GFRP reinforcement (with similar sectional areas) was from approximately three to four times the axial peak load, highlighting the greater load participation of steel reinforcement due to its higher elastic modulus. In addition, the numerical modeling and analysis conducted using ABAQUS/CAE 2019 software exhibited strong concordance with experimental findings concerning failure modes and capacity to carry axial loads.
Abstract:
The hotel sector is one of the most vital sectors exposed to risks, and the authorities concerned with control must take their active and influential role in putting the hotel sector on the right track and compatible with the internationally approved approaches, and the importance of auditing the performance of the hotel sector in light of the (Covid-19) pandemic is embodied in the fact that it gives a clear and realistic picture to the management and regulatory bodies about the performance and activities of this sector and the shortcomings and deviations that must be addressed, and also helps government decision makers to ob
... Show MoreA comparison between the resistance capacity of a single pile excited by two opposite rotary machines embedded in dry and saturated sandy soil was considered experimentally. A small-scale physical model was manufactured to accomplish the experimental work in the laboratory. The physical model consists of: two small motors supplied with eccentric mass 0·012 kg and eccentric distance 20 mm representing the two opposite rotary machines, an aluminum shaft with 20 mm in diameter as the pile, and a steel plate with dimensions of (160 × 160 × 20 mm) as a pile cap. The experimental work was achieved taking the following parameters into consideration, pile embedment depth ratio (L/d; length to diameter) and operating freq
... Show MoreUndoubtedly, rutting in asphalt concrete pavement is considered a major dilemma in terms of pavement performance and safety faced by road users as well as the road authorities. Rutting is a bowl-shaped depression in the wheel paths that develop gradually with the increasing number of load applications. Heavy axle loadings besides the high pavement summer temperature enhance the problem of rutting. According to the AASHTO design equation for flexible pavements, a 1.1 in rut depth will reduce the present serviceability index of relatively new pavement, having no other distress, from 4.2 to 2.5. With this amount of drop in serviceability, the entire life of the pavement in effect has been lost. Therefore, it is crucial to look at the mechani
... Show MoreFour new complexes of Pd(II), Pt(II) and Pt(IV) with DMSO solution of the ligand 8-[(4-nitrophenyl)azo]guanine (L) have been synthesized. Reaction of the ligand with Pd(II) at different pH gave two new complexes, at pH=8, a complex of the formula [Pd(L)2]Cl2.DMSO (1) was formed, while at pH=4.5,the complex[Pd(L)3]Cl2.DMSO (2) was obtained. Meanwhile, the reaction of the ligand with Pt(II) and Pt(IV) revealed new complexes with the formulas[Pt(L)2]Cl2.DMSO (3)and [Pt(L)3]Cl4.DMSO (4) at pH 7.5 and 6 respectively.
All the preparations were performed after fixing the optimum pH and concentration. The effect of time on the stability of these complexes was checked. The stoichiometry of the complexes was determined by the mole ratio and Job
In this work, the behavior of reinforced concrete columns under biaxial bending is studied. This work aims at studying the strengthening of columns by using carbon fiber reinforced polymer (CFRP). The experimental work includes investigation of eight reinforced concrete columns (150*150*500mm) tested under several load conditions. Variables considered in the test program include; effect of eccentricity and effect of longitudinal reinforcement (Ø12mm or Ø6mm). Test results are discussed based on load – lateral deflection behavior, load –longitudinal deflection behavior, ultimate load and failure modes. The CFRP reinforcement permits
a complete change in the failure mode of the columns .The effect of longitudinal reinforcement in
A simple, rapid, sensitive and inexpensive approach is described in this work based on a combination of solid‐phase extraction of 8‐hydroxyquinoline (8HQ), for speciation and preconcentration of Cr(III) and Cr(VI) in river water, and the direct determination of these species using a flow injection system with chemiluminescence detection (FI–CL) and a 4‐diethylamino phenyl hydrazine (DEAPH)–hydrogen peroxide system. At different pH, the two forms of chromium [Cr(III) and Cr(VI)] have different exchange capacities for 8HQ, therefore two columns were constructed; the pH of column 1 was adjusted to pH 3 for retaining Cr(III) and column 2 was adjusted to pH 1 for retaining of Cr(VI). The sorbe
The sorption of Cu2+ ions from synthetic wastewater using crushed concrete demolition waste (CCDW) which collected from a demolition site was investigated in a batch sorption system. Factors influencing on sorption process such as shaking time (0-300min), the initial concentration of contaminant (100-750mg/L), shaking speed (0-250 rpm), and adsorbent dosage (0.05-3 g/ml) have been studied. Batch experiments confirmed that the best values of these parameters were (180 min, 100 mg/l, 250 rpm, 0.7 g CCDW/100 ml) respectively where the achieved removal efficiency is equal to 100%. Sorption data were described using four isotherm models (Langmuir, Freundlich, Redlich-Peterson, and Radke-Prausnitz). Results proved that the pure ads
... Show MoreConcrete is widely used in construction materials since early 1800's. It has been known that concrete is weak in tension, so it requires some addition materials to have ductile behavior and enhance its tensile strength and strain capacity to improve their uses. In this study reactive powder concrete (RPC) was used with steel fiber by using different types of cement; (Ordinary Portland cement (OPC) and/or Portland- Limestone cement (PLC)) with three types of mixtures (OPC at the first mix, 50 % OPC and 50 % PLC at the second mix and PLC at the third mix). The behavior of RPC with steel fibers on compressive strength and tensile strength of concrete with different ages of curing (7, 14, 28 and 60) days and shrinkage have been studied. The clo
... Show MoreAdvancing the multi-scale performance of asphalt pavements requires innovative binder modifications that address limitations in rutting resistance, fatigue resistance, and durability across the binder, mixture, and structural levels. This study evaluates the performance of asphalt cement, mixtures, and pavement systems modified with a combination of polyethylene (PE) and carbon nanotubes (CNTs). The binder was modified using 4% PE and varying CNT contents (0.5%, 1%, 1.5%, and 2% by weight of the modified binder). Binder performance was assessed through conventional and rheological tests, including penetration, softening point, viscosity, performance grade (PG) evaluation, and master curve analysis. Mixture-level performance was eval
... Show More