Concrete columns with hollow-core sections find widespread application owing to their excellent structural efficiency and efficient material utilization. However, corrosion poses a challenge in concrete buildings with steel reinforcement. This paper explores the possibility of using glass fiber-reinforced polymer (GFRP) reinforcement as a non-corrosive and economically viable substitute for steel reinforcement in short square hollow concrete columns. Twelve hollow short columns were meticulously prepared in the laboratory experiments and subjected to pure axial compressive loads until failure. All columns featured a hollow square section with exterior dimensions of (180 × 180) mm and 900 mm height. The columns were categorized into four separate groups with different variables: steel and GFRP longitudinal reinforcement ratio, hollow ratio, spacing between ties, and reinforcement type. The experimental findings point to the compressive participation of longitudinal GFRP bars, estimated to be approximately 35% of the tensile strength of GFRP bars. Notably, increasing GFRP longitudinal reinforcement significantly improved the ultimate load capability of hollow square GFRP column specimens. Specifically, elevating the ratio of GFRP reinforcement from 1.46% to 2.9%, 3.29%, 4.9%, and 5.85% resulted in axial load capacity improvements of 32.3%, 43.9%, 60.5%, and 71.7%, respectively. Specifically, the GFRP specimens showed a decrease in capacity of 13.1%, 9.2%, and 9.4%, respectively. Notably, the load contribution of steel reinforcement to GFRP reinforcement (with similar sectional areas) was from approximately three to four times the axial peak load, highlighting the greater load participation of steel reinforcement due to its higher elastic modulus. In addition, the numerical modeling and analysis conducted using ABAQUS/CAE 2019 software exhibited strong concordance with experimental findings concerning failure modes and capacity to carry axial loads.
Carbon-fiber-reinforced polymer (CFRP) is widely acknowledged as a leading advanced material structure, offering superior properties compared to traditional materials, and has found diverse applications in several industrial sectors, such as that of automobiles, aircrafts, and power plants. However, the production of CFRP composites is prone to fabrication problems, leading to structural defects arising from cycling and aging processes. Identifying these defects at an early stage is crucial to prevent service issues that could result in catastrophic failures. Hence, routine inspection and maintenance are crucial to prevent system collapse. To achieve this objective, conventional nondestructive testing (NDT) methods are utilized to i
... Show MoreIn this work, the behavior of reinforced concrete columns under biaxial bending is studied. This work aims at studying the strengthening of columns by using carbon fiber reinforced polymer (CFRP). The experimental work includes investigation of eight reinforced concrete columns (150*150*500mm) tested under several load conditions. Variables considered in the test program include; effect of eccentricity and effect of longitudinal reinforcement (Ø12mm or Ø6mm). Test results are discussed based on load – lateral deflection behavior, load –longitudinal deflection behavior, ultimate load and failure modes. The CFRP reinforcement permits
a complete change in the failure mode of the columns .The effect of longitudinal reinforcement in
The objective of this study was to investigate the release profile of different fat and water soluble bases using diazepam as a model drug , and then to develop a satisfactory formula with a rapid release of diazepam from suppository bases .The study was conducted using theobroma oil ,glycerol-gelatin and glycerol-PEG1540 bases using conventional mold method for preparation .while the later base was utilized to incorporate diazepam ( buffered solution ) in a hollow type suppositories. The results indicated that all types of bases can be utilized to formulate diazepam as rectal suppositories with acceptable disintegration time ( 12, 10, 6, and 6min.), respectively . While 100% of the released drug had been shown differen
... Show MoreBackground: One of the most common problems that encountered is postburn contracture which has both functional and aesthetic impact on the patients. Various surgical methods had being proposed to treat such problem. Aim: To evaluate the effectiveness of square flap in management of postburn contracture in several part of the body. Patients and methods: From April 2019 to June 2020 a total number of 20 patients who had postburn contracture in various parts of their body were subjected to scar contracture release using square flap. The follow up period was ranging between 6 months to 12 months. Results: All of our patients had achieved complete release of their band with maximum postoperative motion together with accepted aesthetic outcome. A
... Show MoreAbstract:
The hotel sector is one of the most vital sectors exposed to risks, and the authorities concerned with control must take their active and influential role in putting the hotel sector on the right track and compatible with the internationally approved approaches, and the importance of auditing the performance of the hotel sector in light of the (Covid-19) pandemic is embodied in the fact that it gives a clear and realistic picture to the management and regulatory bodies about the performance and activities of this sector and the shortcomings and deviations that must be addressed, and also helps government decision makers to ob
... Show MoreThe using of recycled aggregates from construction and demolition waste (CDW) can preserve natural aggregate resources, reduce the demand for landfill, and contribute to a sustainable built environment. Concrete demolition waste has been proven to be an excellent source of aggregates for new concrete production. At a technical, economic, and environmental level, roller compacted concrete (RCC) applications benefit various civil construction projects. Roller Compacted Concrete (RCC) is a homogenous mixture that is best described as a zero-slump concrete placed with compacting equipment, uses in storage areas, dams, and most often as a basis for rigid pavements. The mix must be sufficiently dry to support
... Show MorePhotovoltaic (PV) devices are widely used renewable energy resources and have been increasingly manufactured by many firms and trademarks. This condition makes the selection of right product difficult and requires the development of a fast, accurate and easy setup that can be implemented to test available samples and select the cost effective, efficient, and reliable product for implementation. An automated test setup for PV panels using LabVIEW and several microcontroller-based embedded systems were designed, tested, and implemented. This PV testing system was fully automated, where the only human intervention required was the instalment of PV panel and set up of required testing conditions. The designed and implemented system was
... Show MoreFour new complexes of Pd(II), Pt(II) and Pt(IV) with DMSO solution of the ligand 8-[(4-nitrophenyl)azo]guanine (L) have been synthesized. Reaction of the ligand with Pd(II) at different pH gave two new complexes, at pH=8, a complex of the formula [Pd(L)2]Cl2.DMSO (1) was formed, while at pH=4.5,the complex[Pd(L)3]Cl2.DMSO (2) was obtained. Meanwhile, the reaction of the ligand with Pt(II) and Pt(IV) revealed new complexes with the formulas[Pt(L)2]Cl2.DMSO (3)and [Pt(L)3]Cl4.DMSO (4) at pH 7.5 and 6 respectively.
All the preparations were performed after fixing the optimum pH and concentration. The effect of time on the stability of these complexes was checked. The stoichiometry of the complexes was determined by the mole ratio and Job
The sorption of Cu2+ ions from synthetic wastewater using crushed concrete demolition waste (CCDW) which collected from a demolition site was investigated in a batch sorption system. Factors influencing on sorption process such as shaking time (0-300min), the initial concentration of contaminant (100-750mg/L), shaking speed (0-250 rpm), and adsorbent dosage (0.05-3 g/ml) have been studied. Batch experiments confirmed that the best values of these parameters were (180 min, 100 mg/l, 250 rpm, 0.7 g CCDW/100 ml) respectively where the achieved removal efficiency is equal to 100%. Sorption data were described using four isotherm models (Langmuir, Freundlich, Redlich-Peterson, and Radke-Prausnitz). Results proved that the pure ads
... Show More