Concrete columns with hollow-core sections find widespread application owing to their excellent structural efficiency and efficient material utilization. However, corrosion poses a challenge in concrete buildings with steel reinforcement. This paper explores the possibility of using glass fiber-reinforced polymer (GFRP) reinforcement as a non-corrosive and economically viable substitute for steel reinforcement in short square hollow concrete columns. Twelve hollow short columns were meticulously prepared in the laboratory experiments and subjected to pure axial compressive loads until failure. All columns featured a hollow square section with exterior dimensions of (180 × 180) mm and 900 mm height. The columns were categorized into four separate groups with different variables: steel and GFRP longitudinal reinforcement ratio, hollow ratio, spacing between ties, and reinforcement type. The experimental findings point to the compressive participation of longitudinal GFRP bars, estimated to be approximately 35% of the tensile strength of GFRP bars. Notably, increasing GFRP longitudinal reinforcement significantly improved the ultimate load capability of hollow square GFRP column specimens. Specifically, elevating the ratio of GFRP reinforcement from 1.46% to 2.9%, 3.29%, 4.9%, and 5.85% resulted in axial load capacity improvements of 32.3%, 43.9%, 60.5%, and 71.7%, respectively. Specifically, the GFRP specimens showed a decrease in capacity of 13.1%, 9.2%, and 9.4%, respectively. Notably, the load contribution of steel reinforcement to GFRP reinforcement (with similar sectional areas) was from approximately three to four times the axial peak load, highlighting the greater load participation of steel reinforcement due to its higher elastic modulus. In addition, the numerical modeling and analysis conducted using ABAQUS/CAE 2019 software exhibited strong concordance with experimental findings concerning failure modes and capacity to carry axial loads.
Iraqi calcium bentonite was activated via acidification to study its structural and electrical properties. The elemental analysis of treated bentonite was determined by using X-ray fluorescence while the unit crystal structure was studied through X-ray diffraction showing disappearance of some fundamental reflections due to the treatment processes. The surface morphology, on the other hand, was studied thoroughly by Scanning Electron microscopy SEM and Atomic Force Microscope AFM showing some fragments of montmorillonite sheets. Furthermore, the electrical properties of bentonite were studied including: The dielectric permittivity, conductivity, tangent loss factor, and impedance with range of frequency (0.1-1000 KHz) at different temperatu
... Show MoreIn the present work, We study the structural and optical properties of (ZnO), which are prepared by thermal evaporation technique, where deposit (Zn) on glass substrates at different thicknesses (150,250,350)nm, deposited on glass substrate at R.T. with rate (5 nm sec-1). And then we make oxidation for (Zn) films at temperature (500) and using the air for one hour, and last annealing samples at temperature (400,500) for one hour. The investigation of (XRD) indicates that the (ZnO) films are polycrystalline type of hexagonal with a preferred orientation along (002) to all samples and analysis reveals that the intensity of this orientation increases with the increase of the thickness and annealing temperature.  
... Show MoreThe current issues in spam email detection systems are directly related to spam email classification's low accuracy and feature selection's high dimensionality. However, in machine learning (ML), feature selection (FS) as a global optimization strategy reduces data redundancy and produces a collection of precise and acceptable outcomes. A black hole algorithm-based FS algorithm is suggested in this paper for reducing the dimensionality of features and improving the accuracy of spam email classification. Each star's features are represented in binary form, with the features being transformed to binary using a sigmoid function. The proposed Binary Black Hole Algorithm (BBH) searches the feature space for the best feature subsets,
... Show MoreA twisted-fin array as an innovative structure for intensifying the charging response of a phase-change material (PCM) within a shell-and-tube storage system is introduced in this work. A three-dimensional model describing the thermal management with charging phase change process in PCM was developed and numerically analyzed by the enthalpy-porosity method using commercial CFD software. Efficacy of the proposed structure of fins for performing better heat communication between the active heating surface and the adjacent layers of PCM was verified via comparing with conventional longitudinal fins within the same design limitations of fin material and volume usage. Optimization of the fin geometric parameters including the pitch, numb
... Show MoreMany studies have evaluated the effect of platelet rich plasma (PRP) in the treatment of non-union fractures but few studies have investigated their effect on the union of femoral neck fractures or their functional outcome in young adults. The aim of this study was to evaluate the union time and functional outcome in young adult patients with femoral neck fracture managed by three cannulated screws injected with PRP and those managed by fixation only. This prospective study included 24 patients diagnosed with femoral neck fractures within 24 hours of presentation. Twelve cases in group A were managed by closed reduction and three cannulated screws fixation injected with PRP; twelve patients in group B were managed only by closed reduction a
... Show MoreThe calcination treatments and a binder of poly acrylic acid PAA (1wt%)
effects on kaolinite particles were investigated through dielectric properties at
1MHz ,quantitative analysis of X-ray diffraction and microstructure. The calcinated
samples at 850°C/3hr and fired at 1350°C/2hr were revealed decrease in broadening
(Full Width at half maximum) FWHM and increase of dielectric constant.
This research studies the rheological properties ( plastic viscosity, yield point and apparent viscosity) of Non-Newtonian fluids under the effect of temperature using different chemical additives, such as (xanthan gum (xc-polymer), carboxyl methyl cellulose ( High and low viscosity ) ,polyacrylamide, polyvinyl alcohol, starch, Quebracho and Chrome Lignosulfonate). The samples were prepared by mixing 22.5g of bentonite with 350 ml of water and adding the additives in four different concentrations (3, 6, 9, 13) g by using Hamilton Beach mixer. The rheological properties of prepared samples were measured by using Fan viscometer model 8-speeds. All the samples were subjected to Bingham plastic model. The temperature range studi
... Show MoreThe study included 200 samples were collected from children under two years included (50 samples from each of Cerebrospinal fluid, Blood, Stool and Urine) from, (Central Children Hospital and Children's Protections Educational Hospital) The Iraqi Ministry of Health, the Department of Health Baghdad .the period from the first of 2015 September to the first of December 2015, Were obtained isolates bacterial subjected to the cultural, microscopic and biochemical examination and diagnosed to the species by using vitek2 system .The results showed there were contamination in 6.5% of clinical samples. The diagnosed colonies which gave pink color on the MacConkey agar, golden yellow color on the Trypton Soy agar and green color on t
... Show More