Preferred Language
Articles
/
KRcZoZIBVTCNdQwCiLuT
Structural Performance of a Hollow-Core Square Concrete Column Longitudinally Reinforced with GFRP Bars under Concentric Load
...Show More Authors

Concrete columns with hollow-core sections find widespread application owing to their excellent structural efficiency and efficient material utilization. However, corrosion poses a challenge in concrete buildings with steel reinforcement. This paper explores the possibility of using glass fiber-reinforced polymer (GFRP) reinforcement as a non-corrosive and economically viable substitute for steel reinforcement in short square hollow concrete columns. Twelve hollow short columns were meticulously prepared in the laboratory experiments and subjected to pure axial compressive loads until failure. All columns featured a hollow square section with exterior dimensions of (180 × 180) mm and 900 mm height. The columns were categorized into four separate groups with different variables: steel and GFRP longitudinal reinforcement ratio, hollow ratio, spacing between ties, and reinforcement type. The experimental findings point to the compressive participation of longitudinal GFRP bars, estimated to be approximately 35% of the tensile strength of GFRP bars. Notably, increasing GFRP longitudinal reinforcement significantly improved the ultimate load capability of hollow square GFRP column specimens. Specifically, elevating the ratio of GFRP reinforcement from 1.46% to 2.9%, 3.29%, 4.9%, and 5.85% resulted in axial load capacity improvements of 32.3%, 43.9%, 60.5%, and 71.7%, respectively. Specifically, the GFRP specimens showed a decrease in capacity of 13.1%, 9.2%, and 9.4%, respectively. Notably, the load contribution of steel reinforcement to GFRP reinforcement (with similar sectional areas) was from approximately three to four times the axial peak load, highlighting the greater load participation of steel reinforcement due to its higher elastic modulus. In addition, the numerical modeling and analysis conducted using ABAQUS/CAE 2019 software exhibited strong concordance with experimental findings concerning failure modes and capacity to carry axial loads.

Scopus Clarivate Crossref
View Publication
Publication Date
Tue Sep 01 2015
Journal Name
Journal Of Engineering
Mixed Convection Heat Transfer in a Vertical Saturated Concentric Annulus Packed with a Metallic Porous Media
...Show More Authors

Mixed convection heat transfer in a vertical concentric annulus packed with a metallic porous media and heated at a constant heat flux is experimentally investigated with water as the working fluid. A series of experiments have been carried out with a Rayleigh number range from Ra=122418.92 to 372579.31 and Reynolds number that based on the particles diameter of Red=14.62, 19.48 and 24.36. Under steady state condition, the measured data were collected and analyzed. Results show that the wall surface temperatures are affected by the imposed heat flux variation and Reynolds number variation. The variation of the local heat transfer coefficient and the mean Nusselt number are presented and analyzed. An empirical

... Show More
View Publication Preview PDF
Publication Date
Wed Mar 16 2022
Journal Name
2022 Muthanna International Conference On Engineering Science And Technology (micest)
A hybrid feature selection technique using chi-square with genetic algorithm
...Show More Authors

View Publication
Scopus (2)
Crossref (2)
Scopus Crossref
Publication Date
Mon Oct 17 2022
Journal Name
Sustainability
Analysis and Residual Behavior of Encased Pultruded GFRP I-Beam under Fire Loading
...Show More Authors

In this paper, fire resistance and residual capacity tests were carried out on encased pultruded glass fiber-reinforced polymer (GFRP) I-beams with high-strength concrete beams. The specimens were loaded concurrently under 25% of the ultimate load and fire exposure (an increase in temperature of 700 °C) for 70 min. Subsequently, the fire-damaged specimens were allowed to cool and then were loaded statically until failure to explore the residual behaviors. The effects of using shear connectors and web stiffeners on the residual behavior were investigated. Finite Element (FE) analysis was developed to simulate the encased pultruded GFRP I-beams under the effect of fire loading. The thermal analyses were performed using the general-pu

... Show More
Scopus (18)
Crossref (24)
Scopus Clarivate Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Journal Of Engineering
Production Load–bearing Concrete Masonry Units by Using Recycled Waste Crushed Clay Bricks; A Review
...Show More Authors

There are serious environmental problems in all countries of the world, due to the waste material such as crushed clay bricks (CCB) and in huge quantities resulting from the demolition of buildings. In order to reduce the effects of this problem as well as to preserve natural resources, it is possible to work on recycling (CCB) and to use it in the manufacture of environmentally friendly loaded building units by replacing percentages in coarse aggregate by volume. It can be used as a powder and replacing of percentages in cement by weight and study the effect on the physical and mechanical properties of the concrete and the masonry unit. Evaluation of its performance through workability, dry density, compressive strength, thermal conduct

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sun Dec 01 2019
Journal Name
Engineering, Technology & Applied Science Research
Experimental and Numerical Comparison of Reinforced Concrete Gable Roof Beams with Openings of Different Configurations
...Show More Authors

This paper demonstrates an experimental and numerical study aimed at comparing the influence of openings of different configurations on the flexural behavior of reinforced concrete gable roof beams. The experimental program consisted of testing six simply supported gable beams subjected to mid-point concentrated load. The variable which has been investigated in this work was opening's configuration (quadrilateral or circular) with the same upper and lower chords depth. The results indicate improvement in the beams’ flexural behavior when circular openings were used compared with that of quadrilateral openings, represented by an increase in ultimate load capacity and a decrease in deflection at the service limit. Also, there was an

... Show More
View Publication Preview PDF
Crossref (18)
Crossref
Publication Date
Tue Mar 01 2022
Journal Name
Journal Of Engineering
Numerical Investigation of the Flexure Behavior of Reinforced Concrete Spandrel Beams with Distributed Tension Reinforcement
...Show More Authors

When the flange of a reinforced concrete spandrel beam is in tension, current design codes and specifications enable a portion of the bonded flexure tension reinforcement to be distributed over an effective flange width. The flexural behavior of the RC L-shaped spandrel beam when reinforcement is laterally displaced in the tension flange is investigated experimentally and numerically in this work. Numerical analysis utilizing the finite element method is performed on discretized flanged beam models validated using experimentally verified L-shaped beam specimens to achieve study objectives. A parametric study was carried out to evaluate the influence of various factors on the beam’s flexure behavior. Results showed that

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Thu Aug 01 2019
Journal Name
Iop Conference Series: Materials Science And Engineering
Effect of Embedment Depth on Raft Foundation Settlement Under Seismic Load
...Show More Authors
Abstract<p>Dynamic loads highly influence soil properties and may cause real damage to structures and buildings. This article reports the experimental results from 24 tests to study the settlement of flexible and rigid raft foundation with different embedment depth rested on dense sandy soil. A small scale building model of dimension 200*200 mm and 320 mm in height was performed with reinforced concrete raft foundation of 10 mm thickness for flexible raft and 23 mm for rigid raft, The shaking table technique was used to simulate the seismic effect, the shaker was sat to give three different excitation frequencies 1,2,and3 Hz and displacement amplitude equal to 13 mm, the foundation was placed at</p> ... Show More
View Publication
Crossref (1)
Scopus Crossref
Publication Date
Wed Jul 01 2020
Journal Name
Iop Conf. Series: Materials Science And Engineering
Numerical Study of Specially Shaped Slender RC Columns under Compressive Load
...Show More Authors
Abstract<p>In most Reinforced Concrete (RC) buildings, the cross-section size of rectangular columns that conventionally used in these structures is larger than the thickness of their partitions. Consequently, a part of the column is protruded out of the wall which has some architectural disadvantages. Reducing the column size by using high strength concrete will result in slender column, thus the stability problem may be occurred. The stability problem is difficult to be overcome with rectangular columns. This paper study the effectiveness of using new types of columns called Specially Shaped Reinforced Concrete (SSRC) columns. Besides, the use of SSRC columns provides many structural advantage</p> ... Show More
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Mon Oct 01 2018
Journal Name
Journal Of Engineering
Performance of Self-Compacting Concrete Slab with Grinded Local Rocks
...Show More Authors

The effect of using grinded rocks of (quartzite and porcelanite) as powder of (10 and 20) % replacement by weight of cement for self-compacting concrete slabs was investigated in this study. Five slabs with 15 concrete cubes were tested experimentally at 28 days to study the compressive strength, ultimate load, ultimate deflection, ductility, crack load and steel strain. The test results show that, the compressive strength improvement when replacement of local rock powder reached to (7.3, 4.22) % for (10 and 20) % quartzite powder and (11.3, 16.1) % for (10 and 20) % porcelanite powder, respectively compared to the reference specimen. The ultimate load percentage increase for slabs with (10 and 20) % rep

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Civil And Environmental Engineering
Performance of Prestressed Concrete Hunched Beams with Multi-Quadrilaterals Openings
...Show More Authors
Abstract<p>A long-span Prestressed Concrete Hunched Beam with Multi-Quadrilateral Opening has been developed as an alternative to steel structural elements. An experimental program was created and evaluated utilizing a single mid-span monotonic static load on simply supported beams, which included six beams with openings and the solid control beam without openings, to investigate the performance of such beams. The number and height of the quadrilateral openings are the variables to consider. According to test results, the presence of openings in the prestressed concrete hunched beam with multi-quadrilateral opening did not considerably affect their ultimate load capacity with respect to a contro</p> ... Show More
View Publication Preview PDF
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref