Preferred Language
Articles
/
KRcZoZIBVTCNdQwCiLuT
Structural Performance of a Hollow-Core Square Concrete Column Longitudinally Reinforced with GFRP Bars under Concentric Load
...Show More Authors

Concrete columns with hollow-core sections find widespread application owing to their excellent structural efficiency and efficient material utilization. However, corrosion poses a challenge in concrete buildings with steel reinforcement. This paper explores the possibility of using glass fiber-reinforced polymer (GFRP) reinforcement as a non-corrosive and economically viable substitute for steel reinforcement in short square hollow concrete columns. Twelve hollow short columns were meticulously prepared in the laboratory experiments and subjected to pure axial compressive loads until failure. All columns featured a hollow square section with exterior dimensions of (180 × 180) mm and 900 mm height. The columns were categorized into four separate groups with different variables: steel and GFRP longitudinal reinforcement ratio, hollow ratio, spacing between ties, and reinforcement type. The experimental findings point to the compressive participation of longitudinal GFRP bars, estimated to be approximately 35% of the tensile strength of GFRP bars. Notably, increasing GFRP longitudinal reinforcement significantly improved the ultimate load capability of hollow square GFRP column specimens. Specifically, elevating the ratio of GFRP reinforcement from 1.46% to 2.9%, 3.29%, 4.9%, and 5.85% resulted in axial load capacity improvements of 32.3%, 43.9%, 60.5%, and 71.7%, respectively. Specifically, the GFRP specimens showed a decrease in capacity of 13.1%, 9.2%, and 9.4%, respectively. Notably, the load contribution of steel reinforcement to GFRP reinforcement (with similar sectional areas) was from approximately three to four times the axial peak load, highlighting the greater load participation of steel reinforcement due to its higher elastic modulus. In addition, the numerical modeling and analysis conducted using ABAQUS/CAE 2019 software exhibited strong concordance with experimental findings concerning failure modes and capacity to carry axial loads.

Scopus Clarivate Crossref
View Publication
Publication Date
Sun Apr 01 2007
Journal Name
Journal Of Engineering
CURVATURE DUCTILITYOF REINFORCED CONCRETE BEAMSECTIONS STIFFENED WITH STEEL PLATES
...Show More Authors

Publication Date
Mon Mar 01 2021
Journal Name
Key Engineering Materials
Experimental Investigation of Reinforced Concrete Columns with Steel Embedded Tubes
...Show More Authors

This study aimed to investigate the influence of longitudinal steel embedded tubes located at the center of the column cross-section on the behavior of reinforced concrete (RC) columns. The experimental program consisted of 8 testing pin-ended square sectional columns of 150×150 mm, having a total height of 1400 mm, subjected to eccentric load. The considered variables were the steel square tube sizes of 25, 51 and 68 mm side dimensions and the load eccentricity (50 and 150) mm. RC columns were concealed steel tubes with hollow ratios of 3%, 12% and 20% depending on tube sizes used. The experimental results indicated an improvement in the overall behavior of eccentric columns when steel embedded tubes are used. The maximum gain in

... Show More
View Publication
Scopus Crossref
Publication Date
Wed Jan 01 2014
Journal Name
Journal Of Engineering
Punching Shear Strength of Reinforced Concrete Flat Plates with Openings
...Show More Authors

Publication Date
Wed Apr 05 2023
Journal Name
Journal Of Engineering
Punching Shear Strength of Reinforced Concrete Flat Plates with Openings
...Show More Authors

Test results of six half-scale reinforced concrete flat plates connections with an opening in the vicinity of the column are reported. The test specimens represent a portion of a slab bounded by the lines of contraflexure around the column. The tests were designed to study the effect of openings on the punching shear behavior of the slab-column connections. The test parameters were the location and the size of the openings. One specimen had no opening and the remaining five had various arrangements of openings around the column. All specimens were cast with normal density concrete of approximately 30 MPa compressive strength. The openings in the specimens were square, with the sides parallel to the sides of the column. Three sizes of ope

... Show More
View Publication Preview PDF
Crossref (16)
Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Engineering, Technology & Applied Science Research
The Fire Effect on the Performance of Reinforced Concrete Beams with Partial Replacement of Coarse Aggregates by Expanded Clay Aggregates
...Show More Authors

This paper aims to investigate the flexural behavior of reinforced concrete beams considering fire resistance by adding Lightweight Expanded Clay Aggregates (LECA) to the concrete mix as partial coarse aggregate replacement. LECA is a type of porous clay with a uniform pore structure with fine, closed cells and hard, tightly sintered skin. The experimental work comprised four reinforced self-compacted concrete beams. All the specimens were identical in their geometrical layout of 1600×240×200 mm, reinforcement details, and support condition (simply supported). For all the beams, the main reinforcement was provided by two bars, each having a diameter of 12 mm, while a bar of 6 mm diameter was employed for the top and shear reinforc

... Show More
View Publication
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Sep 01 2021
Journal Name
Computers And Concrete
Improving the seismic performance of reinforced concrete frames using an innovative metallic-shear damper
...Show More Authors

Scopus (9)
Scopus
Publication Date
Fri Oct 13 2023
Journal Name
Engineering, Technology & Applied Science Research
The Experimental and Theoretical Effect of Fire on the Structural Behavior of Laced Reinforced Concrete Deep Beams
...Show More Authors

A Laced Reinforced Concrete (LRC) structural element comprises continuously inclined shear reinforcement in the form of lacing that connects the longitudinal reinforcements on both faces of the structural element. This study conducted a theoretical investigation of LRC deep beams to predict their behavior after exposure to fire and high temperatures. Four simply supported reinforced concrete beams of 1500 mm, 200 mm, and 240 mm length, width, and depth, respectively, were considered. The specimens were identical in terms of compressive strength (  40 MPa) and steel reinforcement details. The same laced steel reinforcement ratio of 0.0035 was used. Three specimens were burned at variable durations and steady-state temperatures (one

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Dec 09 2020
Journal Name
Civil Engineering Journal
Torsional Strengthening of Reinforced Concrete Beams with Externally-Bonded Fibre Reinforced Polymer: An Energy Absorption Evaluation
...Show More Authors

The impacts of numerous important factors on the Energy Absorption (EA) of torsional Reinforced Concrete (RC) beams strengthened with external FRP is the main purpose and innovation of the current research. A total of 81 datasets were collected from previous studies, focused on the investigation of EA behaviour. The impact of nine different parameters on the Torsional EA of RC-beams was examined and evaluated, namely the concrete compressive strength (f’c), steel yield strength (fy), FRP thickness (tFRP), width-to-depth of the beam section (b/h), horizontal (ρh) and vertical (ρv) steel ratio, angle of twist (θu), ultimate torque (Tu), and FRP ultimate strength (fy-FRP). For the evaluation of the energy absorption capacity at di

... Show More
View Publication
Scopus (14)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Tue Nov 01 2016
Journal Name
Journal Of Engineering
Modeling of Comparative Performance of Asphalt Concrete under Hammer, Gyratory, and Roller Compaction
...Show More Authors

The main objective of this study is to develop predictive models using SPSS software (version 18) for Marshall Test results of asphalt mixtures compacted by Hammer, Gyratory, and Roller compaction. Bulk density of (2.351) gm/cc, at OAC of (4.7) % was obtained as a benchmark after using Marshall Compactor as laboratory compactive effort with 75-blows. Same density was achieved by Roller and Gyratory Compactors using its mix designed methods.

A total of (75) specimens, for Marshall, Gyratory, and Roller Compactors have been prepared, based on OAC of (4.7) % with an additional asphalt contents of more and less than (0.5) % from the optimum value. All specimens have been subjected to Marshall Test. Mathematical model

... Show More
View Publication Preview PDF
Publication Date
Tue Sep 01 2020
Journal Name
Results In Engineering
Performance evaluation of asphalt concrete mixes under varying replacement percentages of natural sand
...Show More Authors

Frequently, load associated mode of failure, rutting and fatigue, are the main failure types found in some newly constructed roads within Baghdad, the capital of Iraq, and some suburban areas. The use of excessive amount of natural sand in asphalt concrete mixes which is attractive to local contractors could be one of the possible causes to the lack of strength properties of the mixes resulting in frustration in the pavement performance. In this study, the performance properties of asphalt concrete mixes with two natural sand types, desert and river sands, were evaluated. Moreover, five replacement rates of 0, 25, 50, 75, and 100% by weight of the fine aggregate finer than 4.75 were used. The performance properties including moisture susc

... Show More
View Publication
Crossref (15)
Crossref