One of the most serious health disasters in recent memory is the COVID-19 epidemic. Several restriction rules have been forced to reduce the virus spreading. Masks that are properly fitted can help prevent the virus from spreading from the person wearing the mask to others. Masks alone will not protect against COVID-19; they must be used in conjunction with physical separation and avoidance of direct contact. The fast spread of this disease, as well as the growing usage of prevention methods, underscore the critical need for a shift in biometrics-based authentication schemes. Biometrics systems are affected differently depending on whether are used as one of the preventive techniques based on COVID-19 pandemic rules. This study provides an overview of biometrics systems and approaches in the post-COVID-19 pandemic. The fundamental COVID-19 prevention rules are first reviewed. The relationships between each regulation and the biometrics that may be impacted are then thoroughly investigated. Recommendations for future trends of feasible approaches are provided to assist researchers in advance and enhance the performance of the biometric system for the post-COVID-19 pandemic environment.
The process of soil classification in Iraq for industrial purposes is important topics that need to be extensive and specialized studies. In order for the advancement of reality service and industrial in our dear country, that a lot of scientific research touched upon the soil classification in the agricultural, commercial and other fields. No source and research can be found that touched upon the classification of land for industrial purposes directly. In this research specialized programs have been used such as geographic information system software The geographical information system permits the study of local distribution of phenomena, activities and the aims that can be determined in the loca
Groundwater is an essential source because of its high quality and continuous availability characterize this water resource. Therefore, the study of groundwater has required more attention. The present study aims to assess and manage groundwater quality's suitability for various purposes through the Geographical Information System GIS and the Water Quality Index WQI. The study area is located in the city of Baghdad in central Iraq, with an approximate area of 900 , data were collected from the relevant official departments representing the locations of 97 wells of groundwater in the study area for the year 2019, as it included physicochemical parameters such as pH, EC, TDS, Na, K, Mg, Ca, Cl, , and &nbs
... Show MoreThe removal of heavy metal ions from wastewater by sorptive flotation using Amberlite IR120 as a resin, and flotation column, was investigated. A combined two-stage process is proposed as an alternative of the heavy metals removal from aqueous solutions. The first stage is the sorption of heavy metals onto Amberlite IR120 followed by dispersed-air flotation. The sorption of metal ions on the resin, depending on contact time, pH, resin dosage, and initial metal concentration was studied in batch method .Various parameters such as pH, air flow rate, and surfactant concentration were investigated in the flotation stage. Sodium lauryl sulfate (SLS) and Hexadecyltrimethyl ammonium bromide (HTAB) were used as anionic and cationic surfactant re
... Show MoreThis study was undertaken to diagnose routine settling problems within a third-party oil and gas companies’ Mono-Ethylene Glycol (MEG) regeneration system. Two primary issues were identified including; a) low particle size (<40 μm) resulting in poor settlement within high viscosity MEG solution and b) exposure to hydrocarbon condensate causing modification of particle surface properties through oil-wetting of the particle surface. Analysis of oil-wetted quartz and iron carbonate (FeCO₃) settlement behavior found a greater tendency to remain suspended in the solution and be removed in the rich MEG effluent stream or to strongly float and accumulate at the liquid-vapor interface in comparison to naturally water-wetted particles. As su
... Show MoreIn this study, successive electrocoagulation (EC) and electro-oxidation (EO) processes were used to minimize some of the major pollutants in real wastewater, such as organics (detected by chemical oxygen demand (COD)), and turbidity. The wastewater utilized in the present study was collected from the Midland Refinery Company in Baghdad-Iraq. The performance of the successive batch EC-EO processes was studied by utilizing Graphite and Aluminum (Al) as monopolar anode electrodes and stainless steel (st.st.) as the cathode. The Taguchi experimental design approach was used to attain the best experimental conditions for COD reduction as a major response. Starting from chemical oxygen demand COD of (600 ppm), the effects of current densi
... Show MoreIn this work, the fusion cross section , fusion barrier distribution and the probability of fusion have been investigated by coupled channel method for the systems 46Ti+64Ni, 40Ca+194Pt and 40Ar+148Sm with semi-classical and quantum mechanical approach using SCF and CCFULL Fortran codes respectively. The results for these calculations are compared with available experimental data. The results show that the quantum calculations agree better with experimental data, especially bellow the Coulomb barrier, for the studied systems while above this barrier, the two codes reproduce the data.
The response of the combustor’s liner to the air-flow that passes through it is the key reason for the combustion chambers noise, hence the instabilities of those chambers that decreases the mechanical efficiency of such sections, by increased its mechanical vibrations, which increases the failure rate created during originating of the cracks spreading by the shakes producing by the series of high-level frequencies. Accordingly, any work debating the impact of the context of liners in the combustion chamber can provide grasping for the combustion noise generated by the undesirable vibrations, and benefits the industrial firms to design an ideal production procedure which increases the lifespan of the combustor. The goal of this wo
... Show MoreThe response of the combustor’s liner to the air-flow that passes through it is the key reason for the combustion chambers noise, hence the instabilities of those chambers that decreases the mechanical efficiency of such sections, by increased its mechanical vibrations, which increases the failure rate created during originating of the cracks spreading by the shakes producing by the series of high-level frequencies. Accordingly, any work debating the impact of the context of liners in the combustion chamber can provide grasping for the combustion noise generated by the undesirable vibrations, and benefits the industrial firms to design an ideal production procedure which increases the lifespan of the combustor. The goal of this work is
... Show More