The performance and lifetime of the flexible asphalt pavement are mainly dependent on the interfacial bond strength between layer courses. To enhance the bond between layers, adhesive materials, such as tack coats, are used. The tack coat itself is a bituminous material, which is applied on an existing relatively non-absorbent surface to ensure a strong bond between the old and newly paved layer. The primary objective of this study was to evaluate the effects of various types of tack coat materials on interlayer bond strength and to determine the optimal application rate for each type. The tack coat types used in this paper were RC-70, RC-250, and CSS-1h. Both laboratory-prepared and field-constructed hot mix asphalt concrete pavements using the tack coats were tested for the binding strength between the layers. A direct shear test was used for the testing. The results obtained from the study showed that the optimum application rate for RC-70 was 0.1 L/m2, and for RC-250, it was 0.2 L/m2, while the optimum application rate for CSS-1h was 0.1 L/m2. From the field test, the optimum application rate of the RC-250 tack coat was 0.1 L/m2.
The behavior corrosion inhibition of aluminum alloy (Al6061) in acidic (0.1 M HCl) and saline (3.5% NaCl) solutions was investigated in the absence and the presence of expired diclofenac sodium drug (DSD) as a corrosion inhibitor. The influence of temperature and was studied using electrochemical techniques. In addition, scanning electron microscopy (SEM) was used to study the surface morphology. The results showed that DSD acted as a powerful inhibitor in acidic solutions, while a moderate influence was observed with saline one. Maximum inhibition efficiency was 99.99 and 83.32% in acidic and saline solutions at 150 ppm of DSD, respectively. Corrosion current density that obtained using electrochemical technique was increased with temperat
... Show MoreThis study involved the treatment of textile wastewater contaminated with direct blue 15 dye (DB15) using a heterogeneous photo-Fenton-like process. Bimetallic iron/copper nanoparticles loaded on bentonite clay were used as heterogeneous catalysts and prepared via liquid-phase reduction method using eucalyptus leaves extract (E-Fe/Cu@BNPs). Characterization methods were applied to resultant particles (NPs), including SEM, BET, and FTIR techniques. The prepared NPs were found with porous and spherical shapes with a specific surface area of particles was 28.589 m2/g. The effect of main parameters on the photo-Fenton-like degradation of DB15 was investigated through batch and continuous fixed-bed systems. In batch mode, pH, H2O2 dosage, DB15 c
... Show MoreThis study shows that it is possible to fabricate and characterize green bimetallic nanoparticles using eco-friendly reduction and a capping agent, which is then used for removing the orange G dye (OG) from an aqueous solution. Characterization techniques such as scanning electron microscopy (SEM), Energy Dispersive Spectroscopy (EDAX), X-Ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) were applied on the resultant bimetallic nanoparticles to ensure the size, and surface area of particles nanoparticles. The results found that the removal efficiency of OG depends on the G‑Fe/Cu‑NPs concentration (0.5-2.0 g.L-1), initial pH (2‑9), OG concentration (10-50 mg.L-1), and temperature (30-50 °C). The batch experiments showed
... Show MoreBackground: The world is in front of two emerging problems being scarceness of virgin re-sources for bioactive materials and the gathering of waste production. Employment of the surplus waste in the mainstream production can resolve these problems. The current study aimed to prepare and characterize a natural composite CaO-SiO2 based bioactive material derived from naturally sustained raw materials. Then deposit this innovative novel bioactive coating composite materials overlying Yttria-stabilized tetragonal zirconia substrate. Mate-rials and method; Hen eggshell-derived calcium carbonate and rice husk-derived silica were extracted from natural resources to prepare the composite coating material. The manufac-tured powder was characterized
... Show MoreLong-term organic amendments are a key strategy to build soil organic carbon (SOC) stocks in semiarid agroecosystems, where low biomass inputs and calcareous parent material constrain carbon accumulation. This 14-year field experiment in central Iraq (2000–2014) evaluated how a gradient of organic matter (OM) additions (0, 1, 2.5, 5, 10, and 20%) affects SOC dynamics, nutrient availability, and soil organic matter composition in clay-dominated, semiarid soils. Surface and subsurface samples (0–30, 30–60, and 60–90 cm) were analysed for SOC, nutrients, and mid-infrared Fourier transform infrared (FTIR) spectra, which were then integrated with Partial Least Squares (PLS) regression and RothC simulations. Moderate OM inputs (5
... Show More Problem solving methods and mechanisms contribute to facilitating human life by providing tools to solve simple and complex daily problems. These mechanisms have been essential tools for professional designers and design students in solving design problems.
This research dealt with one of those mechanisms, which is the (the substance-field model model), as it has been mentioning that this mechanism is characterized by the difficulty of its application, which formed the main research problem. In home gardens (the sub-problem of research), an analysis of this problem was applied and then a solution was found to address it. The researcher used the 3dsmax program to implement the proposed design.
The most important research res