The performance and lifetime of the flexible asphalt pavement are mainly dependent on the interfacial bond strength between layer courses. To enhance the bond between layers, adhesive materials, such as tack coats, are used. The tack coat itself is a bituminous material, which is applied on an existing relatively non-absorbent surface to ensure a strong bond between the old and newly paved layer. The primary objective of this study was to evaluate the effects of various types of tack coat materials on interlayer bond strength and to determine the optimal application rate for each type. The tack coat types used in this paper were RC-70, RC-250, and CSS-1h. Both laboratory-prepared and field-constructed hot mix asphalt concrete pavements using the tack coats were tested for the binding strength between the layers. A direct shear test was used for the testing. The results obtained from the study showed that the optimum application rate for RC-70 was 0.1 L/m2, and for RC-250, it was 0.2 L/m2, while the optimum application rate for CSS-1h was 0.1 L/m2. From the field test, the optimum application rate of the RC-250 tack coat was 0.1 L/m2.
The beet armyworm (BAW), Spodoptera exigua (Lepidoptera: Noctuidae) is a highly destructive pest of vegetables and field crops. Management of beet armyworm primarily relies on synthetic pesticides, which is threatening the beneficial community and environment. Most importantly, the BAW developed resistance to synthetic pesticides with making it difficult to manage. Therefore, alternative and environment-friendly pest management tactics are urgently required. The use of pesticidal plant extracts provides an effective way for a sustainable pest management program. To evaluate the use of pesticidal plant extracts against BAW, we selected six plant species (Lantana camara, Aloe vera, Azadirachta indica, Cymbopogon citratus, Nicotiana tabacum ,
... Show MoreBackground: Early detection of subclinical left ventricular (LV) systolic dysfunction is crucial and could influence patients' prognosis by aiding the clinician to candidate patients for better management.
Objective: To detect early LV systolic dysfunction in asymptomatic patient with chronic aortic regurgitation by two dimensional speckle tracking echocardiography.
Methods: Sixty one asymptomatic patients with chronic aortic regurgitation, with no ischemic heart diseases (by coronary angiography) or conductive heart diseases, no diabetes mellitus, no hypertension, and no other valvular heart diseases (group 1) and fifty age and sex-matched healthy subjects (
... Show MoreA spectrophotometric- reverse flow injection analysis (rFIA) method has been proposed for the determination of Nitrazepam (NIT) in pure and pharmaceutical preparations. The method is based upon the coupling reaction of NIT with a new reagent O-Coumaric acid (OCA) in the presence of sodium periodate in an aqueous solution. The blue color product was measured at 632 nm. The variation (chemical and physical parameters) related with reverse flow system were estimated. The linearity was over the range 15 - 450 µg/mL of NIT with detection limits and limit of quantification of 3.425 and 11.417 µg mL-1 NIT,respectively. The sample throughput of 28 samples
... Show MoreBreast cancer is the most common malignancy in female and the most registered cause of women’s mortality worldwide. BI-RADS 4 breast lesions are associated with an exceptionally high rate of benign breast pathology and breast cancer, so BI-RADS 4 is subdivided into 4A, 4B and 4C to standardize the risk estimation of breast lesions. The aim of the study: to evaluate the correlation between BI-RADS 4 subdivisions 4A, 4B & 4C and the categories of reporting FNA cytology results. A case series study was conducted in the Oncology Teaching Hospital in Baghdad from September 2018 to September 2019. Included patients had suspicious breast findings and given BI-RADS 4 (4A, 4B, or 4C) in the radiological report accordingly. Fine needle aspirati
... Show MoreThis study proposed using color components as artificial intelligence (AI) input to predict milk moisture and fat contents. In this sense, an adaptive neuro‐fuzzy inference system (ANFIS) was applied to milk processed by moderate electrical field‐based non‐thermal (NP) and conventional pasteurization (CP). The differences between predicted and experimental data were not significant (