This research presents an experimental investigation of the rehabilitation efficiency of the damaged hybrid reinforced concrete beams with openings in the shear region. The study investigates the difference in retrofitting ability of hybrid beams compared to traditional beams and the effect of two openings compared with one opening equalized to two holes in the area. Five RC beams classified into two groups, A and B, were primarily tested to full-failure under two-point loads. The first group (A) contained beams with normal weight concrete. The second group (hybrid) included beams with lightweight concrete for web and bottom flange, whereas the top flange was made from normal concrete. Two types of openings were considered in this study, rectangular, with dimensions of 100×200 mm, and two square openings with a side dimension of 100 mm. A full wrapping configuration system for the shear region (failure zone) was adopted in this research. Based on the test results, the repaired beams managed to recover their load carrying capacity, stiffness, and structural performance in different degrees. The normal concrete beam regains its total capacity for all types of openings, while the hybrid beams gain 84% of their strength. The strength of hybrid concrete members compared with normal concrete is 81 and 88% for beams of one opening and two openings, respectively. Doi: 10.28991/CEJ-2022-08-01-012 Full Text: PDF
Background: Diabetes is defined by the World Health Organization as a metabolic disorder characterized by chronic hyperglycemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. Families are co-regulating systems in which the stresses and strains of one family member affect the well-being of another member of the family. Caregivers of children with chronic illness report experiencing more parental stress than parents of healthy children.
Objective: A descriptive cross-sectional study had been conducted in four centers of endocrine diseases in Baghdad city and data was collected by using self-administered questionnaire regarding qua
... Show MoreIn this work, polyvinylpyrrolidone (PVP), Multi-walled carbon nanotubes (MWCNTs) nanocomposite was prepared and hybrid with Graphene (Gr) by casting method. The morphological and optical properties were investigated. Fourier Transformer-Infrared (FT-IR) indicates the presence of primary distinctive peaks belonging to vibration groups that describe the prepared samples. Scanning Electron Microscopy (SEM) images showed a uniform dispersion of graphene within the PVP-MWCNT nanocomposite. The results of the optical study show decrease in the energy gap with increasing MWCNT and graphene concentration. The absorption coefficient spectra indicate the presence of two absorption peaks at 282 and 287 nm attributed to the π-π* electronic tr
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreBackground: Strangles is a highly contagious equine respiratory disease caused by Streptococcus equi subsp. equi. It is a globally significant pathogen and one of the most common infectious agents in horses. In Iraq, no sequencing data on this pathogen are available, and only two molecular studies have been published to date. This study provides preliminary insights into strain diversity and provides a foundation for future large-scale investigations. Aim: This study aimed to investigate the molecular characteristics, identify SeM gene alleles, and perform a phylogenetic analysis of S. equi isolates from horses in Baghdad, Iraq. Methods: We analyzed 59 Streptococcus spp. isolates previously obtained from equine clinical sample
... Show MoreAutorías: Wafaa Sabah Mohammed Al-Khafaji, Fatimah Hameed Kzar Al-Masoodi, Suadad Ibrahim Suhail Al-Kinani. Localización: Revista iberoamericana de psicología del ejercicio y el deporte. Nº. 3, 2023. Artículo de Revista en Dialnet.
<p>Combating the COVID-19 epidemic has emerged as one of the most promising healthcare the world's challenges have ever seen. COVID-19 cases must be accurately and quickly diagnosed to receive proper medical treatment and limit the pandemic. Imaging approaches for chest radiography have been proven in order to be more successful in detecting coronavirus than the (RT-PCR) approach. Transfer knowledge is more suited to categorize patterns in medical pictures since the number of available medical images is limited. This paper illustrates a convolutional neural network (CNN) and recurrent neural network (RNN) hybrid architecture for the diagnosis of COVID-19 from chest X-rays. The deep transfer methods used were VGG19, DenseNet121
... Show More