The dynamic behavior of laced reinforced concrete (LRC) T‐beams could give high‐energy absorption capabilities without significantly affecting the cost, which was offered through a combination of high strength and ductile response. In this paper, LRC T‐beams, composed of inclined continuous reinforcement on each side of the beam, were investigated to maintain high deformations as predicted in blast resistance. The beams were tested under four‐point loading to create pure bending zones and obtain the ultimate flexural capacities. Transverse reinforcement using lacing reinforcement and conventional vertical stirrups were compared in terms of deformation, strain, and toughness changes of the tested beams. The inclination angles of the used lacing reinforcement with respect to the longitudinal reinforcement were 45° and 60°. The lacing reinforcement was efficient and participated actively in resisting the bending moments and shear forces at the same time. For the same diameter of lacing reinforcement, the 60° inclination angle imposed more ductility before failure than beams with lacing reinforcement of a 45° inclination angle. Moreover, the lacing bar diameter was more effective in improving the load‐carrying capacities when using the inclination angle of 45°. A finite element (FE) model was developed and validated using the experimental results based on the measured deformations and strains to conduct a parametric study. The investigated parameters included the effect of the arrangements of the applied loads, laced rebar diameter, inclination angle, tension reinforcement ratio, and concrete strength.
Internal curing is a method that has been advised to decrease the primary age cracking, mainly of concrete mixes using low (water to cementitious materials - w/cm) ratios corresponding to the self-compacting concrete-(SCC). This research aims to study the effect of the internal curing using saturated lightweight aggregate- (LWA) on the steel reinforcing corrosion in SCC. In this research, crushed bricks or thermostone were partially replaced by (20%) by the weight of sand and volumetrically measured. The results showed that the steel reinforcement of internally cured concrete showed a slight increase in corrosion up to 300 days of exposure to the saline solution (containing 3.5% NaCl). The ability of using the crushed bricks or thermostone
... Show MoreInternal curing is a method that has been advised to decrease the primary age cracking, mainly of concrete mixes using low (water to cementitious materials - w/cm) ratios corresponding to the self-compacting concrete-(SCC). This research aims to study the effect of the internal curing using saturated lightweight aggregate- (LWA) on the steel reinforcing corrosion in SCC. In this research, crushed bricks or thermostone were partially replaced by (20%) by the weight of sand and volumetrically measured. The results showed that the steel reinforcement of internally cured concrete showed a slight increase in corrosion up to 300 days of exposure to the saline solution (containing 3.5% NaCl). The ability of using the crushed bricks or thermostone
... Show More: Sound forecasts are essential elements of planning, especially for dealing with seasonality, sudden changes in demand levels, strikes, large fluctuations in the economy, and price-cutting manoeuvres for competition. Forecasting can help decision maker to manage these problems by identifying which technologies are appropriate for their needs. The proposal forecasting model is utilized to extract the trend and cyclical component individually through developing the Hodrick–Prescott filter technique. Then, the fit models of these two real components are estimated to predict the future behaviour of electricity peak load. Accordingly, the optimal model obtained to fit the periodic component is estimated using spectrum analysis and Fourier mod
... Show MorePreserving and saving energy have never been more important, thus the requirement for more effective and efficient heat exchangers has never been more important. However, in order to pave the way for the proposal of a truly efficient technique, there is a need to understand the shortcomings and strengths of various aspects of heat transfer techniques. This review aims to systematically identify these characteristics two of the most popular passive heat transfer techniques: nanofluids and helically coiled tubes. The review indicated that nanoparticles improve thermal conductivity of base fluid and that the nanoparticle size, as well as the concentrations of the nanoparticles plays a major role in the effectiveness of the nanofluids.
... Show MoreAn experimental and theoretical study has been done to investigate the thermal performance of different types of air solar collectors, In this work air solar collector with a dimensions of (120 cm x90 cm x12 cm) , was tested under climate condition of Baghdad city with a (43° tilt angel) by using the absorber plate (1.45 mm thickness, 115 cm height x 84 cm width), which was manufactured from iron painted with a black matt.
The experimental test deals with five types of absorber:-
Conventional smooth flat plate absorber , Finned absorber , Corrugated absorber plate, Iron wire mesh on absorber And matrix of porous media on absorber .
The hourly and average efficiency of the collectors
... Show MoreIn the present study, the effect of new cross-section fin geometries on overall thermal/fluid performance had been investigated. The cross-section included the base original geometry of (triangular, square, circular, and elliptical pin fins) by adding exterior extra fins along the sides of the origin fins. The present extra fins include rectangular extra fin of 2 mm (height) and 4 mm (width) and triangular extra fin of 2 mm (base) 4 mm (height). The use of entropy generation minimization method (EGM) allows the combined effect of thermal resistance and pressure drop to be assessed through the simultaneous interaction with the heat sink. A general dimensionless expression for the entropy generation rate is obtained by con
... Show MoreTest results of eight reinforced concrete one way slab with lacing reinforcement are reported. The tests were designed to study the effect of the lacing reinforcement on the flexural behavior of one way slabs. The test parameters were the lacing steel ratio, flexural steel ratio and span to the effective depth ratio. One specimen had no lacing reinforcement and the remaining seven had various percentages of lacing and flexural steel ratios. All specimens were cast with normal density concrete of approximately 30 MPa compressive strength. The specimens were tested under two equal line loads applied statically at a thirds part (four point bending test) up to failure. Three percentage of lacing and flexural steel ratios wer
... Show More