The dynamic behavior of laced reinforced concrete (LRC) T‐beams could give high‐energy absorption capabilities without significantly affecting the cost, which was offered through a combination of high strength and ductile response. In this paper, LRC T‐beams, composed of inclined continuous reinforcement on each side of the beam, were investigated to maintain high deformations as predicted in blast resistance. The beams were tested under four‐point loading to create pure bending zones and obtain the ultimate flexural capacities. Transverse reinforcement using lacing reinforcement and conventional vertical stirrups were compared in terms of deformation, strain, and toughness changes of the tested beams. The inclination angles of the used lacing reinforcement with respect to the longitudinal reinforcement were 45° and 60°. The lacing reinforcement was efficient and participated actively in resisting the bending moments and shear forces at the same time. For the same diameter of lacing reinforcement, the 60° inclination angle imposed more ductility before failure than beams with lacing reinforcement of a 45° inclination angle. Moreover, the lacing bar diameter was more effective in improving the load‐carrying capacities when using the inclination angle of 45°. A finite element (FE) model was developed and validated using the experimental results based on the measured deformations and strains to conduct a parametric study. The investigated parameters included the effect of the arrangements of the applied loads, laced rebar diameter, inclination angle, tension reinforcement ratio, and concrete strength.
Drug hypersensitivity involves the activation of T cells in an HLA allele–restricted manner. Because the majority of individuals who carry HLA risk alleles do not develop hypersensitivity, other parameters must control development of the drug-specific T cell response. Thus, we have used a T cell–priming assay and nitroso sulfamethoxazole (SMX-NO) as a model Ag to investigate the activation of specific TCR Vβ subtypes, the impact of programmed death -1 (PD-1), CTL-associated protein 4 (CTLA4), and T cell Ig and mucin domain protein-3 (TIM-3) coinhibitory signaling on activation of naive and memory T cells, and the ability of regulatory T cells (Tregs) to prevent responses. An expa
This work aimed to design and testing of a computer program – based eyeQ improvement, photographic memory enhancement, and speed reading to match the reading speed 150 – 250 word per minute (WPM) with the mind ability of processing and eye snap shooting 5000WPM . The package designed based on Visual Basic 6. The efficiency of the designed program was tested on a 10 persons with different levels of education and ages and the results show an increase in their reading speed of approximately 25% in the first month of training with noticeable enhancement in the memory as well as an increase in the ability to read for longer time without feeling nerves or boring, a nonlinear continuously increase in reading speed is assured after the first mo
... Show MoreThe free piston engine linear generator (FPELG) is a simple engine structure with few components, making it a promising power generation system. However, because the engine works without a crankshaft, the handling of the piston motion control (PMC) is the main challenge influencing the stability and performance of FPELGs. In this article, the optimal operating parameters of FPELG for maximising engine performance and reducing exhaust gas emissions were studied. Moreover, the influence of adding hydrogen (H2) to compressed natural gas (CNG) fuel on FPELG performance was investigated. The influence of operating parameters on in-cylinder pressure was also analysed. The single-piston FPELG fuelled by CNG blended with H2 was used to run the expe
... Show MoreThis paper presents experimentally a new configuration of shear connector for Steel-Concrete-Steel (SCS) sandwich beams that is derived from truss configuration. It consists of vertical and inclined shear connectors welded together and to cover steel plates infilled with concrete. Nine simply supported SCS beams were tested until the failure under a concentrated central load (three- point bending). The beams were similar in length (1100mm), width (100mm), and the top plate thickness (4mm). The test parameters were; beam thickness (150, 200, 250, and 300mm), the bottom plate thickness (4, and 6mm), the diameter of the shear connectors (10, 12, and 16mm), and the connector spacing (100, 200, and 250mm). The test results sh
... Show MoreThis study investigates the impact of varying glass fiber-reinforced polymer (GFRP) stirrup spacing on the performance of doubly GFRP-reinforced concrete beams. The research focuses on assessing the behavior of GFRP-reinforced concrete beams, including load-carrying capacity, cracking, and deformability. It explores the feasibility and effectiveness of GFRP bars as an alternative to traditional steel reinforcement in concrete structures. Six concrete beams with a cross-section of 300 mm (wide) × 250 mm (deep), simply supported on a 2100 mm span, were tested. The beams underwent four-point bending with two concentrated loads applied symmetrically at one-third of the span length, resulting in a shear span (a)-to-depth (h) ratio of 2.
... Show MoreA long-span Prestressed Concrete Hunched Beam with Multi-Opening has been developed as an alternative to steel structural elements. The commercial finite element package ABAQUS/CAE version 2019 has been utilized. This article has presented the results of three-dimensional numerical simulations investigating the flexural behaviour of existing experimental work of supported Prestressed Concrete Hunched Beams with multiple openings of varying shapes under static monotonic loads. Insertion openings in such a beam lead to concentrate stresses at the corners of these openings; as a result, extensive cracking would appear. Correlation between numerical models and empirical work has also been discussed regarding load displacemen
... Show MoreThe behavior and shear strength of full-scale (T-section) reinforced concrete deep beams, designed according to the strut-and-tie approach of ACI Code-19 specifications, with various large web openings were investigated in this paper. A total of 7 deep beam specimens with identical shear span-to-depth ratios have been tested under mid-span concentrated load applied monotonically until beam failure. The main variables studied were the effects of width and depth of the web openings on deep beam performance. Experimental data results were calibrated with the strut-and-tie approach, adopted by ACI 318-19 code for the design of deep beams. The provided strut-and-tie design model in ACI 318-19 code provision was assessed and found to be u
... Show More