The dynamic behavior of laced reinforced concrete (LRC) T‐beams could give high‐energy absorption capabilities without significantly affecting the cost, which was offered through a combination of high strength and ductile response. In this paper, LRC T‐beams, composed of inclined continuous reinforcement on each side of the beam, were investigated to maintain high deformations as predicted in blast resistance. The beams were tested under four‐point loading to create pure bending zones and obtain the ultimate flexural capacities. Transverse reinforcement using lacing reinforcement and conventional vertical stirrups were compared in terms of deformation, strain, and toughness changes of the tested beams. The inclination angles of the used lacing reinforcement with respect to the longitudinal reinforcement were 45° and 60°. The lacing reinforcement was efficient and participated actively in resisting the bending moments and shear forces at the same time. For the same diameter of lacing reinforcement, the 60° inclination angle imposed more ductility before failure than beams with lacing reinforcement of a 45° inclination angle. Moreover, the lacing bar diameter was more effective in improving the load‐carrying capacities when using the inclination angle of 45°. A finite element (FE) model was developed and validated using the experimental results based on the measured deformations and strains to conduct a parametric study. The investigated parameters included the effect of the arrangements of the applied loads, laced rebar diameter, inclination angle, tension reinforcement ratio, and concrete strength.
This work aimed to study the effect of laser surface treatment on the mechanical characteristics and corrosion behaviour of grey cast iron type A159. Many technical applications used conventional surface treatment, but laser surface hardening has recently been used to enhance the surface properties of many alloys. The mechanical characteristics, including microstructure, microhardness, and wear resistance of A159 grey cast iron, were studied, in addition to corrosion behaviour. The experimental laser parameters in this work were 0.9, 1.2, and 1.5 KW power with continuous wave carbon dioxide lasers with scanning speeds of 10 and 12 mm/s were used. The results found that phase-transitional alterations in microstructure were influenced by lase
... Show MoreRegulatory T (Treg) cells are one of the major immunosuppressive cell types in cancer and a potential target for immunotherapy, but targeting tumor-infiltrating (TI) Treg cells has been challenging. Here, using single-cell RNA sequencing of immune cells from renal clear cell carcinoma (ccRCC) patients, we identify two distinct transcriptional fates for TI Treg cells, Fate-1 and Fate-2. The Fate-1 signature is associated with a poorer prognosis in ccRCC and several other solid cancers. CD177, a cell surface protein normally expressed on neutrophil, is specifically expressed on Fate-1 TI Treg cells in several solid cancer types, but not on other TI or peripheral Treg cells. Mechanistically, blocking CD
This paper describes flexural behavior of two spans continuous rectangular concrete beams reinforced with mild steel and partially prestressing strands, to evaluate using different prestressing level and prestressing area in continuous prestressed beams at serviceability and ultimate stages. Six continuous concrete beams with 4550 mm length reinforced with mild steel reinforcement and partially prestressed with two prestressing levels of (0.7fpy or 0.55fpy.) of and different amount of 12.7 mm diameter seven wire steel strand were used. Test results showed that the partially prestressed reinforced beams with higher prestressing level exhibited the narrowest crack width, smallest deflection and strain in both steel and concrete at ul
... Show MoreThe present investigation focuses on the response of simply supported reinforced concrete rectangular-section beams with multiple openings of different sizes, numbers, and geometrical configurations. The advantages of the reinforcement concrete beams with multiple opening are mainly, practical benefit including decreasing the floor heights due to passage of the utilities through the beam rather than the passage beneath it, and constructional benefit that includes the reduction of the self-weight of structure resulting due to the reduction of the dead load that achieves economic design. To optimize beam self-weight with its ultimate resistance capacity, ten reinforced concrete beams having a length, width, and depth of 2700, 100, and
... Show MoreThis work aims to investigate the tensile and compression strengths of heat- cured acrylic resin denture base material by adding styrene-butadiene (S- B) to polymethyl methacrylate (PMMA). The most well- known issue in prosthodontic practice is fracture of a denture base. All samples were a blend of (90%, 80%) PMMA and (10%, 20%) S- B powder melted in Oxolane (Tetra hydro furan). These samples were chopped down into specimens of dimensions 100x10x2.5mm to carry out the requirements of tensile tests. The compression strength test specimens were shaped into a cylinder with dimensions of 12.7mm in diameter and 20mm in length. The experimental results show a significant increase in both tensile and compression strengths when compared to cont
... Show MoreCovalent modification of protein by drugs may disrupt self-tolerance, leading to lymphocyte activation. Until now, determination of the threshold required for this process has not been possible. Therefore, we performed quantitative mass spectrometric analyses to define the epitopes formed in tolerant and hypersensitive patients taking the β-lactam antibiotic piperacillin and the threshold required for T cell activation. A hydrolyzed piperacillin hapten was detected on four lysine residues of human serum albumin (HSA) isolated from tolerant patients. The level of modified Lys541 ranged from 2.6 to 4.8%. Analysis of plasma from hypersensitive patients revealed the same pattern and leve