Phase-change materials (PCMs) have a remarkable potential for use as efficient energy storage means. However, their poor response rates during energy storage and retrieval modes require the use of heat transfer enhancers to combat these limitations. This research marks the first attempt to explore the potential of dimple-shaped fins for the enhancement of PCM thermal response in a shell-and-tube casing. Fin arrays with different dimensions and diverse distribution patterns were designed and studied to assess the effect of modifying the fin geometric parameters and distribution patterns in various spatial zones of the physical domain. The results indicate that increasing the number of dimple fins in the range of 8–32 results in faster heat storage rates by up to 8.7% faster than they would be without the dimple fins. Further improvements of approximately 1.4, 1.2, 1.1, and 1.0% can be obtained by optimizing the position of the first fin section, the spacing between other fin sections, the fin spacing based on the aromatic algorithm, and the use of the staggered fin distribution. The heat storage rate is improved by almost 12% for the best case compared with that of the no-fin case.
Microfluidic devices provide distinct benefits for developing effective drug assays and screening. The microfluidic platforms may provide a faster and less expensive alternative. Fluids are contained in devices with considerable micrometer-scale dimensions. Owing to this tight restriction, drug assay quantities are minute (milliliters to femtoliters). In this research, a microfluidic chip consisting of micro-channels carved on substrate materials built using an Acrylic (Polymethyl Methacrylate, PMMA) chip was designed using a Carbon Dioxide (CO2) laser machine. The CO2 parameters influence the chip’s width, depth, and roughness. To have a regular channel surface, and low roughness, the laser power (60 W), with scanning speed (250 m/s)
... Show More
In this work, a test room was built in Baghdad city, with (2*1.5*1.5) m3 in dimensions, while the solar chimneys (SC) were designed with aspect ratio (ar) bigger than 12. Test room was supplied by many solar collectors; vertical single side of air pass with ar equals 25, and tilted 45o double side of air passes with ar equals 50 for each pass, both collectors consist of flat thermal energy storage box collector (TESB) that covered by transparent clear acrylic sheet, third type of collector is array of evacuated tubular collectors with thermosyphon in 45o instelled in the bottom of TESB of vertical SC. The TESB was
... Show Morehave suffered from deteriorating residential neighborhoods, poor economic, social and urban living conditions of the population and deteriorating the infrastructural and superior services. These problems were the secretions of these cities' rapid urbanization. Based on the principles of sustainable urban planning and in order to achieve adequate opportunities for the lives of the population and provide them with sustainable livelihoods, policies have emerged to upgrade along the lines of community participation and programmes to reform and develop those neighbourhoods, raise their efficiency and make them livable. Thus, the problem of research was identified "The absence of a comprehensive cognitive perception of the most prominent facto
... Show More
The advancements in horizontal drilling combined with hydraulic fracturing have been historically proven as the most viable technologies in the exploitation of unconventional resources (e.g., shale and tight gas reservoirs). However, the number of fractures, well timing, and arrangement pattern can have a significant impact on the project economy. Therefore, such design and operating parameters need to be efficiently optimized for obtaining the best production performance from unconventional gas reservoirs. In this study, the process of selecting the optimal number of fractures was conducted on a section of a tight gas reservoir model (based on data from the Whicher Range (WR) tight gas field in Western Australia). Then, the optimal number
... Show MoreBackground; Neonatal period is a very vulnerable period of life due to many problems, In spite of advances in perinatal and neonatal care still, the mortality rate of neonate high especially in developing country The World Health Organization estimates that globally four million neonatal deaths per year, Developing countries account for around 99% of the neonatal mortality in the world, In Iraq. Neonatal mortality rate about 19 per 1000 live births which represent 56% of child death below 5 years age in 2012. .
Objectives The aims of the study were to determine the institutional new-born case fatality rate and the cause of admission and death in the neonatal care unit.
Method; Across-section study was carried out of the Neonatal Ca
This work presents an experimental study of heat transfer and flow of distilled water and metal oxide nanofluid Fe3O4-distilled water at concentrations of (φ = 0.3, 0.6, 0.9 %) by volume in a horizontal pipe with constant magnetic field. All the tests are carried out with Reynolds number range (2900-9820) and uniform heat flux (11262-19562 W/m2). The results show that, the nanofluid concentration and magnetic intensity increase, the Nusselt number increases. The maximum enhancement in Nusselt number with magnetic nanofluid is (5.4 %, 26.4 %, 42.7 %) for volume concentration (0.3, 0.6, 0.9 %) respectively. The enhancement is maximized with magnetic intensity (0.1, 0.2, 0.3 tesla) respectively to (43.9, 44
... Show MorePolymers have the ability to extract water after they have been added to the mortar or concrete mixture. They provide the absorbed water during hydration functioning as internal water source. Absorption polymers can absorb up to hundred times of their own weight of pure water.This research deals with the use of water absorption polymer balls in concrete and study the volumetric change of these mixes and compared the results with reference mix (without polymers). Samples were cured both in air and in water for the mixes to compare results which show that samples in air behave for expansion while sample in water acted for shrinkage.