Azo dyes like methyl orange (MO) are very toxic components due to their recalcitrant properties which makes their removal from wastewater of textile industries a significant issue. The present study aimed to study their removal by utilizing aluminum and Ni foam (NiF) as anodes besides Fe foam electrodes as cathodes in an electrocoagulation (EC) system. Primary experiments were conducted using two Al anodes, two NiF anodes, or Al-NiF anodes to predict their advantages and drawbacks. It was concluded that the Al-NiF anodes were very effective in removing MO dye without long time of treatment or Ni leaching at in the case of adopting the Al-Al or NiF-NiF anodes, respectively. The structure and surface morphology of the NiF electrode were investigated by energy dispersive X-ray (EDX), and field emission scanning electron microscopy (FESEM). Response surface methodology was utilized to predict the optimum conditions by considering current density with 4–8 mA/cm2 range, NaCl concentration in the range of 0.5–1 g/L, and electrolysis time of 10–30 min as controlling parameters. A very high MO dye removal percentage was achieved (97.74%) at 8 mA/cm2, 1 g/L of NaCl within 30 min of electrolysis and consumed energy was 36.299 kWh/kg. This cost-effective EC system with the Al-NiF anodes besides Fe foam as cathode approved its high efficiency in removing MO dye with moderate amounts of NaCl due to the excellent 3D structure of these foam electrodes which highlight foam electrodes as an excellent choice for EC system in an environmentally friendly pathway.
Each organization struggles to exploit each possible opportunity for gaining success and continuing with its work carrier. In this field, organization success can be concluded by fulfilling end user requirements combined with optimizing available resources usage within a specified time and acceptable quality level to gain maximum profit. The project ranking process is governed by the multi-criteria environment, which is more difficult for the governmental organization because other organizations' main target is maximizing profit constrained with available resources. The governmental organization should consider human, social, economic and many more factors. This paper focused on building a multi-criteria optimizing proje
... Show MoreThe study aims to achieve several objectives, including follow-up scientific developments and transformations in the modern concepts of the Holistic Manufacturing System for the purpose of identifying the methods of switching to the entrances of artificial intelligence, and clarifying the mechanism of operation of the genetic algorithm under the Holonic Manufacturing System, to benefit from the advantages of systems and to achieve the maximum savings in time and cost of machines Using the Holistic Manufacturing System method and the Genetic algorithm, which allows for optimal maintenance time and minimizing the total cost, which in turn enables the workers of these machines to control the vacations in th
... Show MoreThe consensus algorithm is the core mechanism of blockchain and is used to ensure data consistency among blockchain nodes. The PBFT consensus algorithm is widely used in alliance chains because it is resistant to Byzantine errors. However, the present PBFT (Practical Byzantine Fault Tolerance) still has issues with master node selection that is random and complicated communication. The IBFT consensus technique, which is enhanced, is proposed in this study and is based on node trust value and BLS (Boneh-Lynn-Shacham) aggregate signature. In IBFT, multi-level indicators are used to calculate the trust value of each node, and some nodes are selected to take part in network consensus as a result of this calculation. The master node is chosen
... Show MoreWithin the framework of big data, energy issues are highly significant. Despite the significance of energy, theoretical studies focusing primarily on the issue of energy within big data analytics in relation to computational intelligent algorithms are scarce. The purpose of this study is to explore the theoretical aspects of energy issues in big data analytics in relation to computational intelligent algorithms since this is critical in exploring the emperica aspects of big data. In this chapter, we present a theoretical study of energy issues related to applications of computational intelligent algorithms in big data analytics. This work highlights that big data analytics using computational intelligent algorithms generates a very high amo
... Show MoreSpecies of genus Chrotogonus (surface grasshoppers) are phytophagous and damaging to various economical important plants in their seedling stages. In order to know the biodiversity of surface grasshoppers, the detailed study has been conducted from four provinces of Pakistan. During this study, biodiversity, taxonomy, diagnosis, morphometric analysis, habitat, global distribution, and remarks of each species have been described. Total of 826 specimens were collected and sorted out into three species and three subspecies: C. (Chrotogonus) homalodemus homalodemus (Blanchard, 1836), C. (Chrotogonus) homalodemus (Blanchard, 1836), C. (Chrotogonus) trachypter
... Show MoreBP algorithm is the most widely used supervised training algorithms for multi-layered feedforward neural net works. However, BP takes long time to converge and quite sensitive to the initial weights of a network. In this paper, a modified cuckoo search algorithm is used to get the optimal set of initial weights that will be used by BP algorithm. And changing the value of BP learning rate to improve the error convergence. The performance of the proposed hybrid algorithm is compared with the stan dard BP using simple data sets. The simulation result show that the proposed algorithm has improved the BP training in terms of quick convergence of the solution depending on the slope of the error graph.