The purpose of my thesis is to synthesis two new bidentate ligands which were used to prepare series of metal complexes by reacting the ligands with (M+2 = Mn, Co, Ni, Cu, Cd and Hg) Succinyl chloride was used as starting material to synthesis two bidentate ligands (L1) and (L2) by reaction it with 4-chloroaniline (L1) and (4-aminoacetophenone) (L2) in dichloromethane as a solvent, that are: (L1) = N1,N4-bis (4-chloro phenyl ) succinamide (L2) =N1,N4-bis(4-acetylphenyl)succinamide The new ligands were characterize by using spectroscopic study (Fourier-transform infrared spectroscopy (FT-IR), electronic spectra ( UV-Vis) ,nuclear magnetic resonance(1H,13C-NMR), Mass spectra ,Elemental microanalysis (C.H.N.S) and thermal analysis (TGA) , which showed a match with the molecular formulas of these ligands. A series of metal complexes (containing six complexes for each ligand) were synthesized from adding some metal ions (M+2 = Mn, Co, Ni, Cu, Cd and Hg) to the ligand with molecular formulas: ]Cl22(H2O)M(L1)2]Cl2 , [2(H2O)M(L2)2] All complexes that synthesized in this investigation were characterized by solubility, melting point, Fourier-transform infrared spectroscopy, electronic spectra, molar conductivity, magnetic susceptibility measurements, element microanalysis and flame atomic absorption, According to the ola inedresults an octahedral geometric structure of the prepared complexes was proposed. The biological activity of the prepared compounds against three types of bacteria, Escherichia coli (G-), and Pseudomonas (G-) Staphylococcus aureus (G+) were examined, the prepared compounds showed good activity and different from the selected bacteria.
Diazotization reaction between 1-(2,4,6-Trihydroxy-phenyl)-ethanone and diazonium salts was carried out resulting in ligand 4-(3-Acetyl-2,4,6-trihydroxy-phenylazo)-N-(5-methyl-isoxazol-3-yl)-benzenesulfonamide, this in turn reacted with the next metal ions (V4+ , Cr3+ , Mn2+ and Cu2+) forming stable complexes with unique geometries such as (Octahedral for both Cr3+ , Mn2+ and Cu2+ ,squar pyramidal for V4+). The creation of such complexes was detected by employing spectroscopic means involving ultraviolet-visible which proved the obtained geometries, fourier transfer proved the formation of azo group and and the coordination with metal ion through it. Pyrolysis (TGA & DSC) studies proved the coordination of water residues with me
... Show MoreThe research includes synthesis and identification of novel three amino acids ligands complexes of some heavy metal (II) ions by using the amino acids like glycine, L-alanine and L-valine. New metal mixed ligand complexes with amino acids are prepared the reaction by reacting the three amino acids with the metals(II) chloride by using 50% ethanolic solution and 50% distall water in the molar ratio [1:1:1:1] ( M:Gly:Ala:Val) except for Co(II) and Ni(II) complexes were found after diagnosis the coordination with both Lalanine and L-valine. The prepared complexes identified by using physical properties, flame atomic absorption and conductivity measurements, in addition, mass, FT.IR and UV.vis spectrum as well magnetic moment data. The general
... Show MoreThe new polydentate Schiff-base oxime (1E,1`E)-2hydroxy-3-((E)-(2-((E)-2hydrxy3-((E)-(hydroxyimino)methyl)-5-methylbenzyldeneamino)ethylimino)methyl)-5methylbenzaldehyde oxime H4L and its binuclear metal complexes with Mn(II), Fe(II), Co(II) and Cu(II) are reported. The reaction of 2,6 diformyl–4–methyl phenol with hydroxyl amine hydrochloride in mole ratios of 1:1 gave the precursor (E)-2-hydroxy-3((hydroxyimino)methyl)-5-methylbenzaldehyde. Condensation reaction of precursor with ethylenediamine in mole ratios of 2:1 gave the new N4O2 Schiff-base oxime ligand H4L. Upon complex formation, the ligand behaves as a tribasic hexadantate species. The mode of bonding and overall geometry of the complexes were determi
... Show MoreThe new bidentate ligand 2-amino-5-phenyl-1,3,4-oxadiazole (Apods) was prepared by the reaction of benzaldehyde semicarbazone with bromine and sodium acetate in acetic acid gave. The prepared ligand was identified by Microelemental Analysis, FT.IR, UV-Vis and 1HNMR spectroscopic techniqes. Treatment of the prepared ligand with the following selected metal ions (MnII, CoII, NiII, CuII and ZnII) in aqueous ethanol with a 1:2 M:L ratio, yielded a series of complexes of the general formula [M(L)2Cl2].The prepared complexes were characterized using flame atomic absorption, (C.H.N)Analysis, FT.IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. Chloride ion content was also evaluated by Mohr metho
... Show Moreالوصف Mixed ligand complexes of Cu (II), Co (II) and Zn (II) with 2-((4-(1-(4-chlorophenylimino) ethyl) phenylimino) methyl) phenol (L) and histidine (His) have been prepared and diagnosed by ¹H and13 C NMR, FT-IR and electronic spectral data, thermal gravimetric, molar conductance and metal analysis measurements. The ligand (L) shows a bidentate nature and the coordination occurs through N and O atoms of imine group and phenol group respectively whereas (His) behave as tridentate ligand, coordinating through the-NH2 group and carboxylate oxygen group and N atoms of imidazole ring. The analytical studies for three complexes have shown octahedral structure. The anticancer activity was screened against human cancer cell such Follicular
... Show MoreTherapeutically and prophylactically using Microspheres containing doxycycline isolated from shell of shrimp. Low molecule weight poly lactic acid was prepared. In this study, Poly lactic acid (PLA)/ poly vinyl alcohol (PVA)/poly ethyleneglycol(PEG) loading doxycycline blend solutions was prepared. Also Poly lactic acid (PLA)-Tannin blend via solvent evaporation method was prepared. Microspheres of chitosan/gelatin microsphere loading doxycycline was prepared by emulsion crosslinking technique. Both microsphere and blends were characterized by Fourier transform infrared (FTIR) spectrophotometer. The FTIR spectra were shown distinguish bands. The in vitro release of doxcycline from its matrix at pH 7 was studied. The prophylactic
... Show MoreSome metal ions (Mn+2, Co+2, Ni+2, Cu+2, Zn+2, Cd+2 and Hg+2) complexes of quinaldic acid (QuinH) and α-picoline (α-Pic) have been synthesized and characterized on the basis of their , FTIR, (U.V-Vis) spectroscopy, conductivity measurements, magnetic susceptibility and atomic absorption. From the results obtained the following general formula has suggested for the prepared complexes [M(Quin)2( α-Pic)2].XH2O where M+2 = (Mn, Co, Ni, Cu, Zn, Cd and Hg), X = 2, X = zero for (Co+2 and Hg+2) complexes, (Quin-) = quinaldate ion, (α-Pic) = α-picoline. The results showed that the deprotonated ligand (QuinH) by using (KOH) coordinated to metal ions as bidentate ligand through the oxygen atom of the carboxylate group (-COO-) and the nitrogen ato
... Show MoreThis paper considers and proposes new estimators that depend on the sample and on prior information in the case that they either are equally or are not equally important in the model. The prior information is described as linear stochastic restrictions. We study the properties and the performances of these estimators compared to other common estimators using the mean squared error as a criterion for the goodness of fit. A numerical example and a simulation study are proposed to explain the performance of the estimators.
In this rescrch,new mixed ligand Schiff base complexes of Mn(II),Co(II),Ni(II),Cu(II), Cd(II), and Hg(II) are formulated from the Schiff base( L)resulting from o-phathalaldehyde(o-PA) with p-nitroaniline(p-NA)as a primary ligand and anthranilic acid as a subordinate ligand. Diagnosis of prepared Ligand and its complexes is done by spectral methods mass spectrometer;1H -NMR for ligand Schiff base FTIR, UV-Vis, molar conductance, elemental microanalyses, atomic absoption and magnetic susceptibility. The analytical studies for the all new complexes have shown octahedral geometries. The study of organicperformance of ligand Schiff base and its complexes show various activity agansit four type of bactria two gram (+) and two gram (-) .