Most of drinking water consuming all over the world has been treated at the water treatment plant (WTP) where raw water is abstracted from reservoirs and rivers. The turbidity removal efficiency is very important to supply safe drinking water. This study is focusing on the use of multiple linear regression (MLR) and artificial neural network (ANN) models to predict the turbidity removal efficiency of Al-Wahda WTP in Baghdad city. The measured physico-chemical parameters were used to determine their effect on turbidity removal efficiency in various processes. The suitable formulation of the ANN model is examined throughout many preparations, trials, and steps of evaluation. The predict
This study was designed to investigate the capability of gram-negative bacteria that isolated form wound and burn infection to production of Biofilm which included (32) isolates, which have multi – drug resistant to antibiotics. The isolates included (10) Pseudomonas aeruginosa, (9) Klebsiella pneumoniae, (6) Escherichia coli, (5) Proteus mirabilis and (2) Enterobacter cloacae. The method used method links the crystal violet with biofilm and reading by ELISA which was adopted on the values of optical density of violets that linked to the mass of biofilm at the wavelength of (620) nm, the test results showed variation of biofilm composition for all bacterial species depending on the optical density value while th
... Show MoreBiosorption of lead, chromium, and cadmium ions from aqueous solution by dead anaerobic biomass (DAB) was studied in single, binary, and ternary systems with initial concentration of 50 mg/l. The metal-DAB affinity was the same for all systems. The main biosorption mechanisms were complexation and physical adsorption of metallic cations onto natural active functional groups on the cell wall matrix of the DAB. It was found that biosorption of the metallic cations onto DAB cell wall component was a surface process. The main functional groups involved in the metallic cation biosorption were apparently carboxyl, amino, hydroxyle, sulfhydryl, and sulfonate. These groups were part of the DAB cell wall structural polymers. Hydroxyle groups (–O
... Show MoreIn this study, a detailed comparative analysis of four different potential energy functions is elaborated. These potential energy functions namely are Morse, Deng-Fan, Varshni, and Lennard-Jones. Furthermore, a mathematical representation for long-range region is elucidated. As a study case, four diatomic molecules (CO, N2, P2, and ScF) in their electronic ground states were chosen. Subsequently, the corresponding dissociation energy as well as some spectroscopic parameters were calculated accordingly.
In this study, light elements for 13C , 16O for (α,n) and (n,α) reactions as well as α-particle energy from 2.7 MeV to 3.08 MeV are used as far as the data of reaction cross sections are available. The more recent cross sections data of (α,n) and (n,α) reactions are reproduced in fine steps 0.02 MeV for 16O (n,α) 13C in the specified energy range, as well as cross section (α,n) values were derived from the published data of (n,α) as a function of α-energy in the same fine energy steps by using the principle inverse reactions. This calculation involves only the ground state of 13C , 16O in the reactions 13C (α,n) 16O and 16O (n,α) 13C.
The gamma dose rates and specific activity of 137Cs, 60Co and 40K in
samples of soil taken from places near the landfill radiation at Al-
Tuwaitha site were measured using a portable NaI(Tl) detector. The
results of gamma dose rates in samples were ranged from 52.6
nGy.h-1 to 131nGy.h-1. Then the specific activity of 137Cs, 60Co and
40K in soil were determined using high pure germanium (HPGe)
detector. The specific activities were varied from 1.9 to 115500 Bq.
kg-1 for 137Cs, from 6.37 to 616.5 Bq. kg-1 for 60Co, and from 3 to
839.5 Bq. kg-1 for 40K. The corresponding health risk for the annual
effective dose equivalent varied from 1.85×10-14 to 15.7mSv/y. The
results were compared with various internationa
Ten soil samples were collected from Ishaqi project area, Salah Al-Dean Governorate, and analysed for chemical elements (Fe2O3, Al2O3, CaO, K2O Na2O, Co, Zn, Cu, and Pb) to detect the pollution in the study soil using the indices of geo-accumulation (I-geo), contamination factor (CF), and pollution load index (PLI), The results of I-geo indicate that the soil of Ishaqi project area is unpolluted with Pb, Co and slightly polluted with Zn and Cu. The results of CF for Zn, Cu, and Co showed class 2 of moderate contamination and class 1 of low contamination in some samples while those for Pb demonstrated class 1 –of low contamination. The Pollution Load Index (PLI) values for Co, Zn, Cu, and Pb showed cla
... Show MoreSixteen water samples were collected from the operation units of the Al-Quds
power plant, north Baghdad city and the surrounding trocars, surface and
groundwater, and analyzed to assess the resulting pollution. The samples were
analyzed for heavy metals (As, Cd, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, U and Zn) by
using inductively coupled plasma- mass spectrometry (ICP-MS). The results were
compared with local and international and standard limits. Heavy metals analysis of
the water samples shows that water of operation units and trocars have mean
concentrations of As, Cd, Cr, Cu, Mo, Pb, Sb, Se, U and Zn were within or lower
than the national and world limits, while Mn and Ni were higher than these limits.
Concentrat