The migration from IPv4 to IPv6 can not be achieved in a brief period, thus both protocols co-exist at certain years. IETF Next Generation Transition Working Group (NGtrans) developed IPv4/IPv6 transition mechanisms. Since Iraq infrastructure, including universities, companies and institutions still use IPv4 protocol only. This research article tries to highlight, discuss a required transition roadmap and extend the local knowledge and practice on IPv6. Also, it introduces a prototype model using Packet tracer (network simulator) deployed for the design and implementation of IPv6 migration. Finally, it compares and evaluates the performance of IPv6, IPv4 and dual stack using OPNET based on QoS metrics such as throughput, delay and point to point utilization the key performance metrics for network with address allocation and router configuration supported by Open Shortest Path First (OSPF) routing protocol. In addition it compares dual-stack to the tunneling mechanism of IPv6 transition using OPNET. The results have shown that IPv6 network produces a higher in throughput, response time and Ethernet delay, but little difference in packet dropped, additionally the result in TCP delay, Point to point utilization shows small values compared to dual-stack networks. The worst performance is noted when 6 to 4 tunneling is used, tunneling network produces a higher delay than other scenarios.
Objective: To evaluate two kinds of extraction (aqueous and ethanolic) for coriander using seeds, leaves and stems and
studying their antibacterial activity against nine different microorganisms.
Methodology: Coriander was selected to carry out this study. Seeds, leaves and stems were collected from local markets in
Baghdad then dried in shade for at least 10 days and grinded to fine powder. Aqueous hot extracts for 1hr. at (50
c) and
cold extracts for 24 hrs at (4
c) were performed by using seeds, leaves and stems then studied antibacterial effect against
nine different microorganisms by using well diffusion technique. Cold aqueous extracts of coriander seeds for 48 hrs. and
72 hrs and ethanolic extraction
This research deals with the study of top soil electrical conductive regions located within Baghdad City. The research included measuring the dissolved soil material extraction Electrical Conductivity (EC) with an aqueous solution for the top (0-30 cm) soil layer of the study area. As the electrical conductivity values increase by increasing the amount of dissolved salts in principle, we can consider that the aim of this research is to predict the amount and distribution of (soil contamination with salts) which is represented by the (Salt Index), this factor calculated for each soil representative sample taken from the region with a depth of (30 cm). Laboratory (EC) test values measured by the use of solutions (EC) digital meter for the ex
... Show MoreThis study was aimed to evaluate the effect of spraying nano chitosan loaded with NPK fertilizer and nettle leaf and green tea extracts on the growth and productivity of potato for the spring and fall seasons of 2021.It was conducted at private farm in Wasit Governorate, Iraq, as a factorial experiment (5 × 5) within randomized complete block design using three replicates. The first factor included spraying with four concentrations of chitosan nanoparticles loaded with NPK fertilizer 0, 10. 15 and 20% in addition to chemical fertilization treatment, the second factor was spraying nettle leaf extract 25 and 35 gL-1 and green tea extract with 2 and 4 g.L-1, in addition to the control treatment, spraying with distilled water only. The
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreA comparison of double informative and non- informative priors assumed for the parameter of Rayleigh distribution is considered. Three different sets of double priors are included, for a single unknown parameter of Rayleigh distribution. We have assumed three double priors: the square root inverted gamma (SRIG) - the natural conjugate family of priors distribution, the square root inverted gamma – the non-informative distribution, and the natural conjugate family of priors - the non-informative distribution as double priors .The data is generating form three cases from Rayleigh distribution for different samples sizes (small, medium, and large). And Bayes estimators for the parameter is derived under a squared erro
... Show MoreCancer is in general not a result of an abnormality of a single gene but a consequence of changes in many genes, it is therefore of great importance to understand the roles of different oncogenic and tumor suppressor pathways in tumorigenesis. In recent years, there have been many computational models developed to study the genetic alterations of different pathways in the evolutionary process of cancer. However, most of the methods are knowledge-based enrichment analyses and inflexible to analyze user-defined pathways or gene sets. In this paper, we develop a nonparametric and data-driven approach to testing for the dynamic changes of pathways over the cancer progression. Our method is based on an expansion and refinement of the pathway bei
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreAs a result of the significance of image compression in reducing the volume of data, the requirement for this compression permanently necessary; therefore, will be transferred more quickly using the communication channels and kept in less space in memory. In this study, an efficient compression system is suggested; it depends on using transform coding (Discrete Cosine Transform or bi-orthogonal (tap-9/7) wavelet transform) and LZW compression technique. The suggested scheme was applied to color and gray models then the transform coding is applied to decompose each color and gray sub-band individually. The quantization process is performed followed by LZW coding to compress the images. The suggested system was applied on a set of seven stand
... Show More