The zirconia ceramic restoration (ZCR) is used as substitutes for the metal-ceramic restoration. Clinical studies demonstrating of ZCRs showed a high fracture incidence of veneering layer than metal-ceramic restorations. This attributed to the low bond strength of zirconia to veneering ceramic as a result of lacking of glass content in its matrix. Surface treatment was proposed to improve the bonding strength between zirconia and veneering ceramic. Several studies revealed that some treatment such as airborne particle abrasion (APA) is responsible for generating chipping of veneering ceramic. The study aimed to develop a new zirconia coatings to increase bonding strength between zirconia substrate and veneering porcelain. Three groups of 150 zirconia specimens (discs, rods and crowns) were divided according to the type of surface treatments; Group M1 designated unsintered zirconia specimens coated with a mixture of glaze porcelain powder and partially-sintered zirconia powder prepared at 1100 °C with two particle sizes; A (26 ± 0.3 μm) and size B (47 ± 0.5 μm), group M2 was coated with mixture of ceramic liner paste and same selected particle sizes of partially-sintered zirconia powders. The coated groups (M1 and M2) subdivided according to powder sizes into M1A, M1B, M2A and M2B. APA group (as control) of sintered zirconia specimens abraded with 50 μm aluminium oxide powder. Surface area roughness (Sa) was measured by surface texture analyser. Surface morphology and elemental composition were analysed by scanning electron microscope (SEM). Crystallographic phases were identified by X-ray diffraction (XRD). The coefficient of thermal expansion (CTE) was assessed by a thermomechanical analyser. For shear bond strength (SBS) test was evaluated by a universal testing machine (UTM). The fracture strength (FS) test prepared and measured by Cercon CAD/CAM system and UTM. Fractographic analysis for SBS and FS were examined by a stereomicroscope and SEM. For each test and measurement, 10 specimens were used per group. Finite element analysis (FEA) was used to simulate and predict the iv stress distributions of the static oblique load in coated and non-coated zirconia crown models. The collected data were analysed by one-way ANOVA and Tukey HSD test at (P<0.05). Surface roughness results showed significant differences among all groups (P<0.000). The M1B group exhibited a higher Sa value (10.33 ± 0.59 μm) among the tested groups. XRD analysis showed tetragonal and monoclinic phases in the control group while only tetragonal was detected in the coated groups. The SBS values for coated groups were higher than the control group. The M1B group showed higher and significant differences in SBS value (37.54 ± 4.38 MPa) among other tested groups (P<0.05). The FS test indicated that coated M1B group (647.92 ± 97.33 N) higher than the other groups (P<0.00). FEA showed the coated crown models have lower stress level than the non-coated model. The new coating (M1B) by airbrush spray technique considered as an alternative way to APA treatment to improve the bond strength of zirconia substrate to veneering ceramic and indicating as an applicable surface treatment for improving the clinical performance of the coated ZCR.
Electrical Discharge Machining (EDM) is a non-traditional cutting technique for metals removing which is relied upon the basic fact that negligible tool force is produced during the machining process. Also, electrical discharge machining is used in manufacturing very hard materials that are electrically conductive. Regarding the electrical discharge machining procedure, the most significant factor of the cutting parameter is the surface roughness (Ra). Conventional try and error method is time consuming as well as high cost. The purpose of the present research is to develop a mathematical model using response graph modeling (RGM). The impact of various parameters such as (current, pulsation on time and pulsation off time) are studied on
... Show MoreThe lethality of inorganic arsenic (As) and the threat it poses have made the development of efficient As detection systems a vital necessity. This research work demonstrates a sensing layer made of hydrous ferric oxide (Fe2H2O4) to detect As(III) and As(V) ions in a surface plasmon resonance system. The sensor conceptualizes on the strength of Fe2H2O4 to absorb As ions and the interaction of plasmon resonance towards the changes occurring on the sensing layer. Detection sensitivity values for As(III) and As(V) were 1.083 °·ppb−1 and 0.922 °·ppb
A chemical optical fiber sensor based on surface plasmon resonance (SPR) was developed and implemented using multimode plastic optical fiber. The sensor is used to detect and measure the refractive index and concentration of various chemical materials (Urea, Ammonia, Formaldehyde and Sulfuric acid) as well as to evaluate the performance parameters such as sensitivity, signal to noise ratio, resolution and figure of merit. It was noticed that the value of the sensitivity of the optical fiber-based SPR sensor, with 60nm and 10 mm long, Aluminum(Al) and Gold (Au) metals film exposed sensing region, was 4.4 μm, while the SNR was 0.20, figure of merit was 20 and resolution 0.00045. In this work a multimode
... Show MoreThe city is a built-up urban space and multifunctional structures that ensure safety, health and the best shelter for humans. All its built structures had various urban roofs influenced by different climate circumstances. That creates peculiarities and changes within the urban local climate and an increase in the impact of urban heat islands (UHI) with wastage of energy. The research question is less information dealing with the renovation of existing urban roofs using color as a strategy to mitigate the impact of UHI. In order to achieve local urban sustainability; the research focused on solutions using different materials and treatments to reduce urban surface heating emissions. The results showed that the new and old technologies, produ
... Show MorePhotonic Crystal Fiber (PCF) based on the Surface Plasmon Resonance (SPR) effect has been proposed to detect polluted water samples. The sensing characteristics are illustrated using the finite element method. The right hole of the right side of PCF core has been coated with chemically stable gold material to achieve the practical sensing approach. The performance parameter of the proposed sensor is investigated in terms of wavelength sensitivity, amplitude sensitivity, sensor resolution, and linearity of the resonant wavelength with the variation of refractive index of analyte. In the sensing range of 1.33 to 1.3624, maximum sensitivities of 1360.2 nm ∕ RIU and 184 RIU−1 are achieved with the high sensor resolutions of 7
... Show MoreBackground: To investigate the effect of different types of storage media on enamel surface microstructure of avulsed teeth by using atomic force microscope.Materials and methods : Twelve teeth blocks from freshly extracted premolars for orthodontic treatment were selected . The study samples were divided into three groups according to type of storage media :A-egg white , B- probiotic yogurt , and C-bovine milk . All the samples were examined for changes in surface roughness and surface granularity distribution using atomic force microscope, at two periods: baseline, and after 8 hours of immersing in the three types of storage media. Results: Milk group had showed a significant increase in the mean of the roughness values at
... Show More