Groupwise non-rigid image alignment is a difficult non-linear optimization problem involving many parameters and often large datasets. Previous methods have explored various metrics and optimization strategies. Good results have been previously achieved with simple metrics, requiring complex optimization, often with many unintuitive parameters that require careful tuning for each dataset. In this chapter, the problem is restructured to use a simpler, iterative optimization algorithm, with very few free parameters. The warps are refined using an iterative Levenberg-Marquardt minimization to the mean, based on updating the locations of a small number of points and incorporating a stiffness constraint. This optimization approach is efficient, has very few free parameters to tune, and the authors show how to tune the few remaining parameters. Results show that the method reliably aligns various datasets including two facial datasets and two medical datasets of prostate and brain MRI images and demonstrates efficiency in terms of performance and a reduction of the computational cost.
Advertisements containing images of women represent one of the most controversial topics of the advertising industry and has an impact on people and trends. This study aims to determine the typical mental image of women purveyed through visual advertising in the Arab media. It also aims to find out whether these advertisements portray women positively or negatively, in addition to investigating the reasons for the recent negative portrayal of women in commercials. The study adopted a descriptive-analytical approach to achieve these objectives. The results indicate that advertising designs that carry images of women displayed in the Arab media create strong mental images. Repetition reinforces these images, and they emphasize the concept
... Show MoreImproved Merging Multi Convolutional Neural Networks Framework of Image Indexing and Retrieval
Today in the digital realm, where images constitute the massive resource of the social media base but unfortunately suffer from two issues of size and transmission, compression is the ideal solution. Pixel base techniques are one of the modern spatially optimized modeling techniques of deterministic and probabilistic bases that imply mean, index, and residual. This paper introduces adaptive pixel-based coding techniques for the probabilistic part of a lossy scheme by incorporating the MMSA of the C321 base along with the utilization of the deterministic part losslessly. The tested results achieved higher size reduction performance compared to the traditional pixel-based techniques and the standard JPEG by about 40% and 50%,
... Show MoreComputer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the bes
... Show MoreBackground/Objectives: The purpose of current research aims to a modified image representation framework for Content-Based Image Retrieval (CBIR) through gray scale input image, Zernike Moments (ZMs) properties, Local Binary Pattern (LBP), Y Color Space, Slantlet Transform (SLT), and Discrete Wavelet Transform (DWT). Methods/Statistical analysis: This study surveyed and analysed three standard datasets WANG V1.0, WANG V2.0, and Caltech 101. The features an image of objects in this sets that belong to 101 classes-with approximately 40-800 images for every category. The suggested infrastructure within the study seeks to present a description and operationalization of the CBIR system through automated attribute extraction system premised on CN
... Show MoreMedia plays an important role in shaping the mental image of their audiences for individuals, groups and organizations, States and peoples. It is the window through which overlooks the masses on events and issues, and in the light of their exposure to these means are their opinions and impressions.
Despite the importance of direct experiences in shaping opinions, drawing pictures and impressions, it is inevitable to rely on these means as individuals can not engage in direct experiences with thousands of events, issues and topics that concern their community and other societies.
There is no doubt that media is of great importance at the present time, because of its significant impact in the management of the course of pol
... Show MoreCyber-attacks keep growing. Because of that, we need stronger ways to protect pictures. This paper talks about DGEN, a Dynamic Generative Encryption Network. It mixes Generative Adversarial Networks with a key system that can change with context. The method may potentially mean it can adjust itself when new threats appear, instead of a fixed lock like AES. It tries to block brute‑force, statistical tricks, or quantum attacks. The design adds randomness, uses learning, and makes keys that depend on each image. That should give very good security, some flexibility, and keep compute cost low. Tests still ran on several public image sets. Results show DGEN beats AES, chaos tricks, and other GAN ideas. Entropy reached 7.99 bits per pix
... Show MoreThis study was conducted to delineate diversity and species composition of non-diatoms planktonic algae in Hoor- Al- Azime marshes, Iran. The samples were collected from four sites at monthly basis from April 2011 to March 2012. A total 88 taxa were identified, out of which (40 taxa, 45.45%) belonging to Cyanophyta followed by Chlorophyta (29 taxa, 32.96%), Euglenophyta (18 taxa, 20.45%) and (1 taxa, 1.14%) of Dinophyta recorded. Comparing species richness (65 taxa, 34.76%) at Shat- Ali (St4) was the highest and the lowest (34 taxa, 18.18%) was observed at Rafi (St2). Species occurrence was associated with temperature where in summer (66 taxa) and (25 taxa) encountered winter. The phy