Groupwise non-rigid image alignment is a difficult non-linear optimization problem involving many parameters and often large datasets. Previous methods have explored various metrics and optimization strategies. Good results have been previously achieved with simple metrics, requiring complex optimization, often with many unintuitive parameters that require careful tuning for each dataset. In this chapter, the problem is restructured to use a simpler, iterative optimization algorithm, with very few free parameters. The warps are refined using an iterative Levenberg-Marquardt minimization to the mean, based on updating the locations of a small number of points and incorporating a stiffness constraint. This optimization approach is efficient, has very few free parameters to tune, and the authors show how to tune the few remaining parameters. Results show that the method reliably aligns various datasets including two facial datasets and two medical datasets of prostate and brain MRI images and demonstrates efficiency in terms of performance and a reduction of the computational cost.
Compression for color image is now necessary for transmission and storage in the data bases since the color gives a pleasing nature and natural for any object, so three composite techniques based color image compression is implemented to achieve image with high compression, no loss in original image, better performance and good image quality. These techniques are composite stationary wavelet technique (S), composite wavelet technique (W) and composite multi-wavelet technique (M). For the high energy sub-band of the 3rd level of each composite transform in each composite technique, the compression parameters are calculated. The best composite transform among the 27 types is the three levels of multi-wavelet
... Show MoreCompression for color image is now necessary for transmission and storage in the data bases since the color gives a pleasing nature and natural for any object, so three composite techniques based color image compression is implemented to achieve image with high compression, no loss in original image, better performance and good image quality. These techniques are composite stationary wavelet technique (S), composite wavelet technique (W) and composite multi-wavelet technique (M). For the high energy sub-band of the 3 rd level of each composite transform in each composite technique, the compression parameters are calculated. The best composite transform among the 27 types is the three levels of multi-wavelet transform (MMM) in M technique wh
... Show MoreInformation hiding strategies have recently gained popularity in a variety of fields. Digital audio, video, and images are increasingly being labelled with distinct but undetectable marks that may contain a hidden copyright notice or serial number, or even directly help to prevent unauthorized duplication. This approach is extended to medical images by hiding secret information in them using the structure of a different file format. The hidden information may be related to the patient. In this paper, a method for hiding secret information in DICOM images is proposed based on Discrete Wavelet Transform (DWT). Firstly. segmented all slices of a 3D-image into a specific block size and collecting the host image depend on a generated key
... Show MoreA new technique for embedding image data into another BMP image data is presented. The image data to be embedded is referred to as signature image, while the image into which the signature image is embedded is referred as host image. The host and the signature images are first partitioned into 8x8 blocks, discrete cosine transformed “DCT”, only significant coefficients are retained, the retained coefficients then inserted in the transformed block in a forward and backward zigzag scan direction. The result then inversely transformed and presented as a BMP image file. The peak signal-to-noise ratio (PSNR) is exploited to evaluate the objective visual quality of the host image compared with the original image.
Non-alcoholic fatty liver disease (NAFLD), characterized by hepatic fat accumulation in individuals consuming little or no alcohol, has become highly prevalent globally. Oxidative stress plays a central role in instigating inflammation and cell death pathways driving NAFLD progression. This case–control study aimed to elucidate the association between circulating levels of the pivotal non-enzymatic antioxidants – coenzyme Q10 and vitamins E and C – and liver injury parameters among 60 Iraqi NAFLD patients versus 30 healthy controls. NAFLD diagnosis entailed over 5% hepatic steatosis on ultrasound excluding other etiologies. Patients spanned three age groups: 20–29, 30–39, an
The 3-parameter Weibull distribution is used as a model for failure since this distribution is proper when the failure rate somewhat high in starting operation and these rates will be decreased with increasing time .
In practical side a comparison was made between (Shrinkage and Maximum likelihood) Estimators for parameter and reliability function using simulation , we conclude that the Shrinkage estimators for parameters are better than maximum likelihood estimators but the maximum likelihood estimator for reliability function is the better using statistical measures (MAPE)and (MSE) and for different sample sizes.
Note:- ns : small sample ; nm=median sample
... Show MoreThe specific activities of the natural radionuclides U-238 and Th-
232 and K-40 in 14 soil samples collected from different sites from
AL-Mustansiriyah university at two depths (topsoil "surface" and
20cm depth) were be investigated using gamma ray spectrometer
3"x3" NaI(Tl) scintillation detector.
The analysis of the energy spectra of the soil samples show that
these samples have specific activities ranging with (16.08-51.11)
Bq/kg for U-238, (14.79-52.29) Bq/kg for Th-232 and (191.08-
377.64) Bq/kg for K-40, with an average values of 29.37, 34.14 and
289.62 Bq/kg for U-238, Th-232, k-40 respectively. The radiation
hazard parameters of the natural radionuclides; radium equivalent
activity (Raeq), gamma a
Apple slice grading is useful in post-harvest operations for sorting, grading, packaging, labeling, processing, storage, transportation, and meeting market demand and consumer preferences. Proper grading of apple slices can help ensure the quality, safety, and marketability of the final products, contributing to the post-harvest operations of the overall success of the apple industry. The article aims to create a convolutional neural network (CNN) model to classify images of apple slices after immersing them in atmospheric plasma at two different pressures (1 and 5 atm) and two different immersion times (3 and again 6 min) once and in filtered water based on the hardness of the slices usin